Skip to content

Conversation

@indietyp
Copy link
Member

@indietyp indietyp commented Jan 3, 2026

🌟 What is the purpose of this PR?

Implements the PostInline pass for HashQL MIR, which runs canonicalization optimizations after inlining to exploit newly exposed optimization opportunities such as constant propagation, dead code elimination, and branch simplification. Additionally, adds is_leaf recomputation after inlining to expose more bonuses and adjusts the config slightly.

🔍 What does this change?

  • Adds PostInline pass as a thin wrapper around Canonicalization with a higher iteration limit (16 vs 8 for PreInline) since inlining can expose more optimization opportunities
  • Ensures is_leaf status properly propagates through the call graph analysis during inlining
  • Adds IdVec::fill_to method for efficiently extending vectors to a specific length
  • Adds comprehensive UI tests covering:
    • Cascading simplification after inlining
    • Closure environment cleanup
    • Constant propagation after inlining
    • Dead code elimination from inlined functions
    • Nested branch elimination
    • Full showcase demonstrating complex nested conditionals collapsing to a single return value
  • Adds benchmark pipeline for post-inline pass

Pre-Merge Checklist 🚀

🚢 Has this modified a publishable library?

This PR:

  • does not modify any publishable blocks or libraries, or modifications do not need publishing

📜 Does this require a change to the docs?

The changes in this PR:

  • are internal and do not require a docs change

🕸️ Does this require a change to the Turbo Graph?

The changes in this PR:

  • do not affect the execution graph

@cursor
Copy link

cursor bot commented Jan 3, 2026

PR Summary

Introduces a post-inlining optimization stage and aligns inlining analysis to better exploit newly exposed opportunities.

  • Adds transform::PostInline (canonicalization tuned for post-inline, 16 iterations) and exposes it via transform::mod; integrates into compiletest suite (mir_pass_transform_post_inline) and benchmark pipeline (PreInline → Inline → PostInline)
  • Refines inlining analysis/heuristics: BodyProperties now carries source; recomputes is_leaf after inlining via new FindApplyCall; CallGraph::{is_leaf,is_single_caller,unique_caller} now filter to Apply edges; tweak InlineHeuristicsConfig defaults (e.g., always_inline=16, size_penalty_factor=0.9)
  • Extends IdVec with from_domain_derive{,_in} helpers for allocator-aware domain-derived vectors
  • Bench updates to return body arrays and add an inlining scenario; numerous new UI tests validating post-inline effects (cascading simplification, constant propagation, dead code and branch elimination, closure env cleanup)

Written by Cursor Bugbot for commit c9fa861. This will update automatically on new commits. Configure here.

@github-actions github-actions bot added area/deps Relates to third-party dependencies (area) area/libs Relates to first-party libraries/crates/packages (area) type/eng > backend Owned by the @backend team area/tests New or updated tests labels Jan 3, 2026
Copy link
Member Author

indietyp commented Jan 3, 2026

This stack of pull requests is managed by Graphite. Learn more about stacking.

@github-actions github-actions bot removed the area/deps Relates to third-party dependencies (area) label Jan 3, 2026
@augmentcode
Copy link

augmentcode bot commented Jan 3, 2026

🤖 Augment PR Summary

Summary: Introduces a new post-inlining optimization stage for HashQL MIR to better capitalize on optimization opportunities exposed by inlining.

Changes:

  • Adds PostInline as a thin wrapper over Canonicalization with a higher iteration cap (16) and wires it into the MIR pass pipeline.
  • Extends the compiletest harness with a dedicated mir/pass/transform/post-inline suite (plus D2 rendering support) and adds multiple UI fixtures showcasing post-inline simplifications.
  • Updates MIR bench pipeline to run PreInline → Inline → PostInline and reuses a single GlobalTransformState across stages.
  • Refactors inlining analysis data: BodyProperties now carries source, and cost/loop metadata is grouped in CostEstimationResidual.
  • Recomputes is_leaf after inlining to unlock additional heuristic bonuses on newly simplified bodies.
  • Tweaks inlining heuristic defaults (always_inline and size_penalty_factor).
  • Adds a small IdVec helper (from_domain_derive*) to build property vectors from an existing domain.

Technical Notes: The PR also adjusts call-graph “single/unique caller” logic to consider only Apply edges and adds tracing as a dependency for MIR instrumentation.

🤖 Was this summary useful? React with 👍 or 👎

Copy link

@augmentcode augmentcode bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Review completed. 2 suggestions posted.

Fix All in Augment

Comment augment review to trigger a new review at any time.

@codspeed-hq
Copy link

codspeed-hq bot commented Jan 3, 2026

CodSpeed Performance Report

Merging this PR will degrade performance by 23.94%

Comparing bm/be-271-hashql-implement-postinline-pass (c9fa861) with main (7b09441)

Summary

❌ 3 (👁 3) regressed benchmarks
✅ 14 untouched benchmarks
🆕 1 new benchmark
🗄️ 12 archived benchmarks run1

Performance Changes

Benchmark BASE HEAD Efficiency
👁 linear 38.2 µs 50.3 µs -23.94%
🆕 inline N/A 232.3 µs N/A
👁 diamond 68.9 µs 84.5 µs -18.48%
👁 complex 100.2 µs 119.3 µs -16.03%

Footnotes

  1. 12 benchmarks were run, but are now archived. If they were deleted in another branch, consider rebasing to remove them from the report. Instead if they were added back, click here to restore them.

@indietyp indietyp force-pushed the bm/be-271-hashql-implement-postinline-pass branch from 8136723 to 805b331 Compare January 17, 2026 16:17
@indietyp indietyp force-pushed the bm/be-269-hashql-move-out-most-of-preinline-into-a-canonicalization branch from e6d0bdc to 5c164f4 Compare January 17, 2026 16:17
@indietyp indietyp force-pushed the bm/be-271-hashql-implement-postinline-pass branch from 805b331 to 4ce88ba Compare January 17, 2026 17:55
@indietyp indietyp force-pushed the bm/be-269-hashql-move-out-most-of-preinline-into-a-canonicalization branch from 5c164f4 to 1ac5573 Compare January 17, 2026 17:55
@graphite-app graphite-app bot changed the base branch from bm/be-269-hashql-move-out-most-of-preinline-into-a-canonicalization to graphite-base/8240 January 19, 2026 09:55
@indietyp indietyp force-pushed the bm/be-271-hashql-implement-postinline-pass branch from 4ce88ba to c9fa861 Compare January 19, 2026 10:15
@vercel vercel bot temporarily deployed to Preview – petrinaut January 19, 2026 10:15 Inactive
@graphite-app graphite-app bot changed the base branch from graphite-base/8240 to main January 19, 2026 10:16
@graphite-app
Copy link
Contributor

graphite-app bot commented Jan 19, 2026

Merge activity

  • Jan 19, 10:16 AM UTC: Graphite rebased this pull request, because this pull request is set to merge when ready.

Copy link

@cursor cursor bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Cursor Bugbot has reviewed your changes and found 2 potential issues.

Bugbot Autofix is OFF. To automatically fix reported issues with Cloud Agents, enable Autofix in the Cursor dashboard.

let target_source = self.properties[ptr].source;
if matches!(target_source, Source::Intrinsic(_)) {
return ControlFlow::Continue(());
}
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Unbounded array access in FindApplyCall may panic

Medium Severity

FindApplyCall::visit_rvalue_apply accesses self.properties[ptr] directly without bounds checking. The properties slice contains entries for user-defined bodies with sequential small DefIds (0 to N-1), but intrinsic DefIds are in the 0xFFFF_FE00 range. If a body after inlining contains an Apply call to an intrinsic, accessing properties[intrinsic_def_id] causes an out-of-bounds panic. Using self.properties.get(ptr) and treating None as "target not in domain" (continue searching) would fix this.

Fix in Cursor Fix in Web

@indietyp indietyp added this pull request to the merge queue Jan 19, 2026
Merged via the queue into main with commit b51cad9 Jan 19, 2026
168 of 196 checks passed
@indietyp indietyp deleted the bm/be-271-hashql-implement-postinline-pass branch January 19, 2026 11:01
@github-actions
Copy link
Contributor

Benchmark results

@rust/hash-graph-benches – Integrations

policy_resolution_large

Function Value Mean Flame graphs
resolve_policies_for_actor user: empty, selectivity: high, policies: 2002 $$28.8 \mathrm{ms} \pm 272 \mathrm{μs}\left({\color{gray}-3.134 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: empty, selectivity: low, policies: 1 $$3.24 \mathrm{ms} \pm 17.1 \mathrm{μs}\left({\color{gray}-2.191 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: empty, selectivity: medium, policies: 1001 $$12.5 \mathrm{ms} \pm 89.6 \mathrm{μs}\left({\color{gray}0.053 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: seeded, selectivity: high, policies: 3314 $$42.8 \mathrm{ms} \pm 316 \mathrm{μs}\left({\color{gray}0.489 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: seeded, selectivity: low, policies: 1 $$14.5 \mathrm{ms} \pm 108 \mathrm{μs}\left({\color{gray}-3.694 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: seeded, selectivity: medium, policies: 1526 $$23.8 \mathrm{ms} \pm 168 \mathrm{μs}\left({\color{gray}-0.861 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: system, selectivity: high, policies: 2078 $$30.8 \mathrm{ms} \pm 196 \mathrm{μs}\left({\color{lightgreen}-28.617 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: system, selectivity: low, policies: 1 $$3.62 \mathrm{ms} \pm 19.8 \mathrm{μs}\left({\color{lightgreen}-82.550 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: system, selectivity: medium, policies: 1033 $$14.6 \mathrm{ms} \pm 122 \mathrm{μs}\left({\color{lightgreen}-49.488 \mathrm{\%}}\right) $$ Flame Graph

policy_resolution_medium

Function Value Mean Flame graphs
resolve_policies_for_actor user: empty, selectivity: high, policies: 102 $$3.64 \mathrm{ms} \pm 19.2 \mathrm{μs}\left({\color{gray}-0.384 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: empty, selectivity: low, policies: 1 $$2.86 \mathrm{ms} \pm 13.3 \mathrm{μs}\left({\color{gray}0.022 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: empty, selectivity: medium, policies: 51 $$3.22 \mathrm{ms} \pm 15.7 \mathrm{μs}\left({\color{gray}-1.973 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: seeded, selectivity: high, policies: 269 $$5.00 \mathrm{ms} \pm 23.3 \mathrm{μs}\left({\color{gray}-0.814 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: seeded, selectivity: low, policies: 1 $$3.42 \mathrm{ms} \pm 15.7 \mathrm{μs}\left({\color{gray}-0.383 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: seeded, selectivity: medium, policies: 107 $$3.98 \mathrm{ms} \pm 28.7 \mathrm{μs}\left({\color{gray}-0.095 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: system, selectivity: high, policies: 133 $$4.27 \mathrm{ms} \pm 23.5 \mathrm{μs}\left({\color{gray}-0.779 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: system, selectivity: low, policies: 1 $$3.32 \mathrm{ms} \pm 16.2 \mathrm{μs}\left({\color{gray}0.830 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: system, selectivity: medium, policies: 63 $$3.86 \mathrm{ms} \pm 22.0 \mathrm{μs}\left({\color{gray}-1.169 \mathrm{\%}}\right) $$ Flame Graph

policy_resolution_none

Function Value Mean Flame graphs
resolve_policies_for_actor user: empty, selectivity: high, policies: 2 $$2.62 \mathrm{ms} \pm 14.1 \mathrm{μs}\left({\color{red}6.88 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: empty, selectivity: low, policies: 1 $$2.54 \mathrm{ms} \pm 14.4 \mathrm{μs}\left({\color{red}7.54 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: empty, selectivity: medium, policies: 1 $$2.65 \mathrm{ms} \pm 14.1 \mathrm{μs}\left({\color{red}9.52 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: system, selectivity: high, policies: 8 $$2.87 \mathrm{ms} \pm 24.6 \mathrm{μs}\left({\color{red}8.26 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: system, selectivity: low, policies: 1 $$2.76 \mathrm{ms} \pm 13.0 \mathrm{μs}\left({\color{red}8.50 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: system, selectivity: medium, policies: 3 $$2.95 \mathrm{ms} \pm 21.6 \mathrm{μs}\left({\color{red}7.76 \mathrm{\%}}\right) $$ Flame Graph

policy_resolution_small

Function Value Mean Flame graphs
resolve_policies_for_actor user: empty, selectivity: high, policies: 52 $$2.91 \mathrm{ms} \pm 17.2 \mathrm{μs}\left({\color{gray}4.24 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: empty, selectivity: low, policies: 1 $$2.61 \mathrm{ms} \pm 13.1 \mathrm{μs}\left({\color{red}6.30 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: empty, selectivity: medium, policies: 25 $$2.78 \mathrm{ms} \pm 17.1 \mathrm{μs}\left({\color{red}5.77 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: seeded, selectivity: high, policies: 94 $$3.29 \mathrm{ms} \pm 17.3 \mathrm{μs}\left({\color{gray}4.31 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: seeded, selectivity: low, policies: 1 $$2.95 \mathrm{ms} \pm 19.6 \mathrm{μs}\left({\color{red}8.64 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: seeded, selectivity: medium, policies: 26 $$3.07 \mathrm{ms} \pm 15.7 \mathrm{μs}\left({\color{gray}5.00 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: system, selectivity: high, policies: 66 $$3.16 \mathrm{ms} \pm 14.8 \mathrm{μs}\left({\color{gray}4.81 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: system, selectivity: low, policies: 1 $$2.82 \mathrm{ms} \pm 18.6 \mathrm{μs}\left({\color{red}5.61 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: system, selectivity: medium, policies: 29 $$3.06 \mathrm{ms} \pm 19.1 \mathrm{μs}\left({\color{gray}4.95 \mathrm{\%}}\right) $$ Flame Graph

read_scaling_complete

Function Value Mean Flame graphs
entity_by_id;one_depth 1 entities $$39.4 \mathrm{ms} \pm 141 \mathrm{μs}\left({\color{gray}1.19 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id;one_depth 10 entities $$79.4 \mathrm{ms} \pm 515 \mathrm{μs}\left({\color{red}5.14 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id;one_depth 25 entities $$44.3 \mathrm{ms} \pm 172 \mathrm{μs}\left({\color{gray}0.383 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id;one_depth 5 entities $$45.7 \mathrm{ms} \pm 241 \mathrm{μs}\left({\color{gray}-0.160 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id;one_depth 50 entities $$55.0 \mathrm{ms} \pm 283 \mathrm{μs}\left({\color{gray}2.94 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id;two_depth 1 entities $$40.1 \mathrm{ms} \pm 170 \mathrm{μs}\left({\color{gray}-2.204 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id;two_depth 10 entities $$419 \mathrm{ms} \pm 887 \mathrm{μs}\left({\color{gray}1.94 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id;two_depth 25 entities $$91.1 \mathrm{ms} \pm 383 \mathrm{μs}\left({\color{gray}-4.681 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id;two_depth 5 entities $$86.8 \mathrm{ms} \pm 433 \mathrm{μs}\left({\color{gray}1.93 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id;two_depth 50 entities $$283 \mathrm{ms} \pm 587 \mathrm{μs}\left({\color{gray}1.11 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id;zero_depth 1 entities $$14.7 \mathrm{ms} \pm 76.1 \mathrm{μs}\left({\color{gray}-2.190 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id;zero_depth 10 entities $$15.2 \mathrm{ms} \pm 68.6 \mathrm{μs}\left({\color{gray}2.50 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id;zero_depth 25 entities $$15.3 \mathrm{ms} \pm 78.7 \mathrm{μs}\left({\color{gray}0.987 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id;zero_depth 5 entities $$15.0 \mathrm{ms} \pm 79.0 \mathrm{μs}\left({\color{gray}-0.146 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id;zero_depth 50 entities $$18.5 \mathrm{ms} \pm 96.9 \mathrm{μs}\left({\color{gray}2.26 \mathrm{\%}}\right) $$ Flame Graph

read_scaling_linkless

Function Value Mean Flame graphs
entity_by_id 1 entities $$14.6 \mathrm{ms} \pm 85.8 \mathrm{μs}\left({\color{gray}0.037 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id 10 entities $$14.9 \mathrm{ms} \pm 85.2 \mathrm{μs}\left({\color{gray}1.42 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id 100 entities $$14.9 \mathrm{ms} \pm 83.5 \mathrm{μs}\left({\color{gray}1.22 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id 1000 entities $$15.5 \mathrm{ms} \pm 90.2 \mathrm{μs}\left({\color{gray}-1.157 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id 10000 entities $$23.5 \mathrm{ms} \pm 191 \mathrm{μs}\left({\color{gray}2.84 \mathrm{\%}}\right) $$ Flame Graph

representative_read_entity

Function Value Mean Flame graphs
entity_by_id entity type ID: https://blockprotocol.org/@alice/types/entity-type/block/v/1 $$30.6 \mathrm{ms} \pm 292 \mathrm{μs}\left({\color{gray}-0.493 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id entity type ID: https://blockprotocol.org/@alice/types/entity-type/book/v/1 $$30.0 \mathrm{ms} \pm 290 \mathrm{μs}\left({\color{gray}-0.805 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id entity type ID: https://blockprotocol.org/@alice/types/entity-type/building/v/1 $$28.9 \mathrm{ms} \pm 275 \mathrm{μs}\left({\color{lightgreen}-5.257 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id entity type ID: https://blockprotocol.org/@alice/types/entity-type/organization/v/1 $$30.6 \mathrm{ms} \pm 302 \mathrm{μs}\left({\color{gray}1.10 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id entity type ID: https://blockprotocol.org/@alice/types/entity-type/page/v/2 $$30.1 \mathrm{ms} \pm 295 \mathrm{μs}\left({\color{gray}-1.723 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id entity type ID: https://blockprotocol.org/@alice/types/entity-type/person/v/1 $$30.5 \mathrm{ms} \pm 338 \mathrm{μs}\left({\color{gray}-1.212 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id entity type ID: https://blockprotocol.org/@alice/types/entity-type/playlist/v/1 $$30.2 \mathrm{ms} \pm 273 \mathrm{μs}\left({\color{lightgreen}-6.050 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id entity type ID: https://blockprotocol.org/@alice/types/entity-type/song/v/1 $$29.8 \mathrm{ms} \pm 340 \mathrm{μs}\left({\color{lightgreen}-5.227 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id entity type ID: https://blockprotocol.org/@alice/types/entity-type/uk-address/v/1 $$29.7 \mathrm{ms} \pm 283 \mathrm{μs}\left({\color{gray}-1.949 \mathrm{\%}}\right) $$ Flame Graph

representative_read_entity_type

Function Value Mean Flame graphs
get_entity_type_by_id Account ID: bf5a9ef5-dc3b-43cf-a291-6210c0321eba $$8.11 \mathrm{ms} \pm 40.8 \mathrm{μs}\left({\color{gray}-0.873 \mathrm{\%}}\right) $$ Flame Graph

representative_read_multiple_entities

Function Value Mean Flame graphs
entity_by_property traversal_paths=0 0 $$47.6 \mathrm{ms} \pm 181 \mathrm{μs}\left({\color{gray}0.629 \mathrm{\%}}\right) $$
entity_by_property traversal_paths=255 1,resolve_depths=inherit:1;values:255;properties:255;links:127;link_dests:126;type:true $$95.2 \mathrm{ms} \pm 388 \mathrm{μs}\left({\color{gray}-0.168 \mathrm{\%}}\right) $$
entity_by_property traversal_paths=2 1,resolve_depths=inherit:0;values:0;properties:0;links:0;link_dests:0;type:false $$53.6 \mathrm{ms} \pm 291 \mathrm{μs}\left({\color{gray}-0.685 \mathrm{\%}}\right) $$
entity_by_property traversal_paths=2 1,resolve_depths=inherit:0;values:0;properties:0;links:1;link_dests:0;type:true $$61.4 \mathrm{ms} \pm 299 \mathrm{μs}\left({\color{gray}0.578 \mathrm{\%}}\right) $$
entity_by_property traversal_paths=2 1,resolve_depths=inherit:0;values:0;properties:2;links:1;link_dests:0;type:true $$69.9 \mathrm{ms} \pm 393 \mathrm{μs}\left({\color{gray}-0.331 \mathrm{\%}}\right) $$
entity_by_property traversal_paths=2 1,resolve_depths=inherit:0;values:2;properties:2;links:1;link_dests:0;type:true $$75.8 \mathrm{ms} \pm 366 \mathrm{μs}\left({\color{gray}-0.937 \mathrm{\%}}\right) $$
link_by_source_by_property traversal_paths=0 0 $$51.1 \mathrm{ms} \pm 303 \mathrm{μs}\left({\color{gray}1.34 \mathrm{\%}}\right) $$
link_by_source_by_property traversal_paths=255 1,resolve_depths=inherit:1;values:255;properties:255;links:127;link_dests:126;type:true $$78.8 \mathrm{ms} \pm 381 \mathrm{μs}\left({\color{gray}1.30 \mathrm{\%}}\right) $$
link_by_source_by_property traversal_paths=2 1,resolve_depths=inherit:0;values:0;properties:0;links:0;link_dests:0;type:false $$58.5 \mathrm{ms} \pm 392 \mathrm{μs}\left({\color{gray}1.39 \mathrm{\%}}\right) $$
link_by_source_by_property traversal_paths=2 1,resolve_depths=inherit:0;values:0;properties:0;links:1;link_dests:0;type:true $$67.7 \mathrm{ms} \pm 558 \mathrm{μs}\left({\color{gray}4.46 \mathrm{\%}}\right) $$
link_by_source_by_property traversal_paths=2 1,resolve_depths=inherit:0;values:0;properties:2;links:1;link_dests:0;type:true $$67.9 \mathrm{ms} \pm 281 \mathrm{μs}\left({\color{gray}-1.418 \mathrm{\%}}\right) $$
link_by_source_by_property traversal_paths=2 1,resolve_depths=inherit:0;values:2;properties:2;links:1;link_dests:0;type:true $$67.8 \mathrm{ms} \pm 270 \mathrm{μs}\left({\color{gray}-0.901 \mathrm{\%}}\right) $$

scenarios

Function Value Mean Flame graphs
full_test query-limited $$145 \mathrm{ms} \pm 391 \mathrm{μs}\left({\color{red}5.32 \mathrm{\%}}\right) $$ Flame Graph
full_test query-unlimited $$143 \mathrm{ms} \pm 531 \mathrm{μs}\left({\color{gray}3.62 \mathrm{\%}}\right) $$ Flame Graph
linked_queries query-limited $$41.2 \mathrm{ms} \pm 231 \mathrm{μs}\left({\color{lightgreen}-60.192 \mathrm{\%}}\right) $$ Flame Graph
linked_queries query-unlimited $$591 \mathrm{ms} \pm 1.04 \mathrm{ms}\left({\color{gray}-0.325 \mathrm{\%}}\right) $$ Flame Graph

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

area/libs Relates to first-party libraries/crates/packages (area) area/tests New or updated tests type/eng > backend Owned by the @backend team

Development

Successfully merging this pull request may close these issues.

3 participants