Skip to content

Conversation

@indietyp
Copy link
Member

@indietyp indietyp commented Jan 1, 2026

🌟 What is the purpose of this PR?

Replaces the ResetAllocator pattern with scoped checkpoints in the HashQL MIR transformation pipeline. Instead of resetting the entire scratch allocator between passes, we now use checkpoint()/rollback() semantics and scoped sub-arenas, which provides more granular memory management, and enables more advanced patterns in the future.

🔍 What does this change?

  • Adds Checkpoint type and checkpoint()/rollback() methods to the BumpAllocator trait
  • Updates PreInlining pass to use BumpAllocator::scoped() for each sub-pass instead of resetting the allocator
  • Updates all transformation passes (CopyPropagation, CfgSimplify, InstSimplify, ForwardSubstitution, AdministrativeReduction, DeadStoreElimination, etc.) to work with scoped allocators
  • Updates benchmarks to use the new scoping pattern
  • Uses heap-based tracking for changed state in transformation passes

Pre-Merge Checklist 🚀

🚢 Has this modified a publishable library?

This PR:

  • does not modify any publishable blocks or libraries, or modifications do not need publishing

📜 Does this require a change to the docs?

The changes in this PR:

  • are internal and do not require a docs change

🕸️ Does this require a change to the Turbo Graph?

The changes in this PR:

  • do not affect the execution graph

🛡 What tests cover this?

  • Existing MIR transformation tests and compiletest UI tests

❓ How to test this?

  1. Run cargo nextest run --package hashql-mir
  2. Run transformation benchmarks: `cargo bench --package

@vercel vercel bot temporarily deployed to Preview – petrinaut January 1, 2026 17:59 Inactive
@cursor
Copy link

cursor bot commented Jan 1, 2026

PR Summary

Introduces scoped bump allocation with checkpoints and refactors MIR transforms to use it, reducing full allocator resets and improving temporary memory management.

  • Add Checkpoint type and checkpoint/rollback to BumpAllocator; implement in core allocator, Heap, and Scratch
  • Update MIR passes to use BumpAllocator instead of ResetAllocator and run sub-steps in scoped arenas: CfgSimplify (now scopes SSA repair/DBE and extracts helpers), AdministrativeReduction, CopyPropagation, DeadBlockElimination, DeadLocalElimination, DeadStoreElimination, InstSimplify, SsaRepair, and PreInlining
  • Rework PreInlining to use scoped allocators per sub-pass and track per-body Changed state on the heap
  • Benchmarks updated to thread a Scratch through runners and construct passes with new_in(scratch)
  • WorkQueue::new_in now preallocates with VecDeque::with_capacity_in(domain_size)
  • Minor API adjustments: ForwardSubstitution generic over Allocator (defaults to Global), import cleanups

Written by Cursor Bugbot for commit c1ba012. This will update automatically on new commits. Configure here.

Copy link
Member Author

indietyp commented Jan 1, 2026

This stack of pull requests is managed by Graphite. Learn more about stacking.

@indietyp indietyp force-pushed the bm/be-267-hashql-do-not-reset-the-scratch-space-but-instead-use-scopes branch from 47b5f9f to 67bcdb0 Compare January 1, 2026 18:00
@vercel vercel bot temporarily deployed to Preview – petrinaut January 1, 2026 18:00 Inactive
@vercel vercel bot temporarily deployed to Preview – petrinaut January 1, 2026 18:03 Inactive
@augmentcode
Copy link

augmentcode bot commented Jan 1, 2026

🤖 Augment PR Summary

Summary: Refactors the HashQL MIR transformation pipeline to stop doing full scratch allocator resets between passes and instead rely on scoped bump allocation/checkpoints for finer-grained temporary memory management.

Changes:

  • Adds a Checkpoint type plus BumpAllocator::checkpoint()/rollback(), implemented for Allocator, AllocatorScope, Heap, and Scratch
  • Updates major MIR passes (e.g. CfgSimplify, CopyPropagation, DSE, SSARepair, AdministrativeReduction) to accept BumpAllocator and use alloc.scoped(...) instead of calling reset()
  • Refactors CfgSimplify internals into helper functions and runs sub-passes under allocator scopes
  • Adjusts PreInlining to scope each sub-pass and uses a heap-backed per-body changed-state slice for the fixpoint loop
  • Updates transformation benchmarks to thread a reusable Scratch through each iteration and construct passes with new_in(scratch)
  • Minor allocation improvement: WorkQueue now pre-allocates its VecDeque with domain-sized capacity

Technical Notes: The intent is to enable more granular allocator usage patterns (checkpoint/rollback + sub-arenas) while keeping pass-local allocations short-lived and composable.

🤖 Was this summary useful? React with 👍 or 👎

Copy link

@augmentcode augmentcode bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Review completed. 1 suggestions posted.

Fix All in Augment

Comment augment review to trigger a new review at any time.

@codspeed-hq
Copy link

codspeed-hq bot commented Jan 1, 2026

CodSpeed Performance Report

Merging this PR will not alter performance

Comparing bm/be-267-hashql-do-not-reset-the-scratch-space-but-instead-use-scopes (c1ba012) with main (40bee1c)

Summary

✅ 17 untouched benchmarks
🗄️ 12 archived benchmarks run1

Footnotes

  1. 12 benchmarks were run, but are now archived. If they were deleted in another branch, consider rebasing to remove them from the report. Instead if they were added back, click here to restore them.

@codecov
Copy link

codecov bot commented Jan 1, 2026

Codecov Report

✅ All modified and coverable lines are covered by tests.
✅ Project coverage is 58.68%. Comparing base (fd458f2) to head (c1ba012).
⚠️ Report is 6 commits behind head on main.

Additional details and impacted files
@@            Coverage Diff             @@
##             main    #8234      +/-   ##
==========================================
- Coverage   59.24%   58.68%   -0.57%     
==========================================
  Files        1191     1191              
  Lines      113313   111702    -1611     
  Branches     4975     4946      -29     
==========================================
- Hits        67134    65547    -1587     
+ Misses      45403    45387      -16     
+ Partials      776      768       -8     
Flag Coverage Δ
local.hash-isomorphic-utils 0.00% <ø> (ø)

Flags with carried forward coverage won't be shown. Click here to find out more.

☔ View full report in Codecov by Sentry.
📢 Have feedback on the report? Share it here.

🚀 New features to boost your workflow:
  • ❄️ Test Analytics: Detect flaky tests, report on failures, and find test suite problems.
  • 📦 JS Bundle Analysis: Save yourself from yourself by tracking and limiting bundle sizes in JS merges.

@graphite-app graphite-app bot requested a review from a team January 2, 2026 15:26
@indietyp indietyp force-pushed the bm/be-266-hashql-implement-pre-inlining-fix-point-loop branch from cf2afea to a941112 Compare January 17, 2026 16:17
@indietyp indietyp force-pushed the bm/be-267-hashql-do-not-reset-the-scratch-space-but-instead-use-scopes branch from f088349 to 427eda4 Compare January 17, 2026 16:17
@graphite-app graphite-app bot changed the base branch from bm/be-266-hashql-implement-pre-inlining-fix-point-loop to graphite-base/8234 January 17, 2026 16:56
@indietyp indietyp force-pushed the bm/be-267-hashql-do-not-reset-the-scratch-space-but-instead-use-scopes branch from 427eda4 to c1ba012 Compare January 17, 2026 17:22
@graphite-app graphite-app bot changed the base branch from graphite-base/8234 to main January 17, 2026 17:22
@graphite-app
Copy link
Contributor

graphite-app bot commented Jan 17, 2026

Merge activity

  • Jan 17, 5:22 PM UTC: Graphite rebased this pull request, because this pull request is set to merge when ready.

@indietyp indietyp added this pull request to the merge queue Jan 17, 2026
Merged via the queue into main with commit 2a2257a Jan 17, 2026
104 of 123 checks passed
@indietyp indietyp deleted the bm/be-267-hashql-do-not-reset-the-scratch-space-but-instead-use-scopes branch January 17, 2026 18:03
@github-actions
Copy link
Contributor

Benchmark results

@rust/hash-graph-benches – Integrations

policy_resolution_large

Function Value Mean Flame graphs
resolve_policies_for_actor user: empty, selectivity: high, policies: 2002 $$26.3 \mathrm{ms} \pm 207 \mathrm{μs}\left({\color{gray}-2.882 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: empty, selectivity: low, policies: 1 $$3.21 \mathrm{ms} \pm 13.6 \mathrm{μs}\left({\color{gray}-4.142 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: empty, selectivity: medium, policies: 1001 $$12.2 \mathrm{ms} \pm 71.6 \mathrm{μs}\left({\color{lightgreen}-8.641 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: seeded, selectivity: high, policies: 3314 $$42.4 \mathrm{ms} \pm 273 \mathrm{μs}\left({\color{gray}-2.505 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: seeded, selectivity: low, policies: 1 $$14.2 \mathrm{ms} \pm 91.7 \mathrm{μs}\left({\color{gray}-4.768 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: seeded, selectivity: medium, policies: 1526 $$24.1 \mathrm{ms} \pm 173 \mathrm{μs}\left({\color{gray}-1.077 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: system, selectivity: high, policies: 2078 $$26.8 \mathrm{ms} \pm 160 \mathrm{μs}\left({\color{lightgreen}-38.598 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: system, selectivity: low, policies: 1 $$3.66 \mathrm{ms} \pm 16.6 \mathrm{μs}\left({\color{lightgreen}-82.419 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: system, selectivity: medium, policies: 1033 $$11.8 \mathrm{ms} \pm 89.4 \mathrm{μs}\left({\color{lightgreen}-62.852 \mathrm{\%}}\right) $$ Flame Graph

policy_resolution_medium

Function Value Mean Flame graphs
resolve_policies_for_actor user: empty, selectivity: high, policies: 102 $$3.68 \mathrm{ms} \pm 20.0 \mathrm{μs}\left({\color{gray}-1.459 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: empty, selectivity: low, policies: 1 $$2.90 \mathrm{ms} \pm 11.0 \mathrm{μs}\left({\color{gray}0.924 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: empty, selectivity: medium, policies: 51 $$3.25 \mathrm{ms} \pm 13.7 \mathrm{μs}\left({\color{gray}0.431 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: seeded, selectivity: high, policies: 269 $$5.13 \mathrm{ms} \pm 22.6 \mathrm{μs}\left({\color{gray}1.17 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: seeded, selectivity: low, policies: 1 $$3.48 \mathrm{ms} \pm 14.7 \mathrm{μs}\left({\color{gray}1.94 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: seeded, selectivity: medium, policies: 107 $$4.03 \mathrm{ms} \pm 19.2 \mathrm{μs}\left({\color{gray}0.582 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: system, selectivity: high, policies: 133 $$4.26 \mathrm{ms} \pm 19.4 \mathrm{μs}\left({\color{gray}-0.473 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: system, selectivity: low, policies: 1 $$3.42 \mathrm{ms} \pm 17.1 \mathrm{μs}\left({\color{gray}3.13 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: system, selectivity: medium, policies: 63 $$3.94 \mathrm{ms} \pm 24.6 \mathrm{μs}\left({\color{gray}-1.073 \mathrm{\%}}\right) $$ Flame Graph

policy_resolution_none

Function Value Mean Flame graphs
resolve_policies_for_actor user: empty, selectivity: high, policies: 2 $$2.59 \mathrm{ms} \pm 11.6 \mathrm{μs}\left({\color{red}7.42 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: empty, selectivity: low, policies: 1 $$2.52 \mathrm{ms} \pm 11.6 \mathrm{μs}\left({\color{red}6.44 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: empty, selectivity: medium, policies: 1 $$2.65 \mathrm{ms} \pm 11.5 \mathrm{μs}\left({\color{red}7.85 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: system, selectivity: high, policies: 8 $$2.84 \mathrm{ms} \pm 15.5 \mathrm{μs}\left({\color{gray}4.45 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: system, selectivity: low, policies: 1 $$2.70 \mathrm{ms} \pm 9.94 \mathrm{μs}\left({\color{red}6.08 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: system, selectivity: medium, policies: 3 $$2.93 \mathrm{ms} \pm 15.0 \mathrm{μs}\left({\color{red}5.95 \mathrm{\%}}\right) $$ Flame Graph

policy_resolution_small

Function Value Mean Flame graphs
resolve_policies_for_actor user: empty, selectivity: high, policies: 52 $$2.98 \mathrm{ms} \pm 14.6 \mathrm{μs}\left({\color{red}5.71 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: empty, selectivity: low, policies: 1 $$2.66 \mathrm{ms} \pm 10.0 \mathrm{μs}\left({\color{red}6.53 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: empty, selectivity: medium, policies: 25 $$2.85 \mathrm{ms} \pm 14.0 \mathrm{μs}\left({\color{red}8.09 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: seeded, selectivity: high, policies: 94 $$3.33 \mathrm{ms} \pm 20.4 \mathrm{μs}\left({\color{red}6.40 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: seeded, selectivity: low, policies: 1 $$2.89 \mathrm{ms} \pm 11.4 \mathrm{μs}\left({\color{red}5.44 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: seeded, selectivity: medium, policies: 26 $$3.12 \mathrm{ms} \pm 18.4 \mathrm{μs}\left({\color{red}5.31 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: system, selectivity: high, policies: 66 $$3.20 \mathrm{ms} \pm 13.4 \mathrm{μs}\left({\color{red}5.55 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: system, selectivity: low, policies: 1 $$2.86 \mathrm{ms} \pm 13.0 \mathrm{μs}\left({\color{red}6.07 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: system, selectivity: medium, policies: 29 $$3.10 \mathrm{ms} \pm 13.0 \mathrm{μs}\left({\color{red}6.77 \mathrm{\%}}\right) $$ Flame Graph

read_scaling_complete

Function Value Mean Flame graphs
entity_by_id;one_depth 1 entities $$39.0 \mathrm{ms} \pm 172 \mathrm{μs}\left({\color{gray}0.352 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id;one_depth 10 entities $$75.7 \mathrm{ms} \pm 480 \mathrm{μs}\left({\color{gray}-2.460 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id;one_depth 25 entities $$43.4 \mathrm{ms} \pm 201 \mathrm{μs}\left({\color{gray}-2.222 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id;one_depth 5 entities $$46.2 \mathrm{ms} \pm 225 \mathrm{μs}\left({\color{gray}-0.212 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id;one_depth 50 entities $$53.5 \mathrm{ms} \pm 256 \mathrm{μs}\left({\color{gray}-0.366 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id;two_depth 1 entities $$40.3 \mathrm{ms} \pm 188 \mathrm{μs}\left({\color{gray}-3.189 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id;two_depth 10 entities $$413 \mathrm{ms} \pm 916 \mathrm{μs}\left({\color{gray}-0.474 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id;two_depth 25 entities $$94.9 \mathrm{ms} \pm 368 \mathrm{μs}\left({\color{gray}-2.941 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id;two_depth 5 entities $$85.1 \mathrm{ms} \pm 395 \mathrm{μs}\left({\color{gray}-0.405 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id;two_depth 50 entities $$283 \mathrm{ms} \pm 752 \mathrm{μs}\left({\color{lightgreen}-9.501 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id;zero_depth 1 entities $$14.6 \mathrm{ms} \pm 65.1 \mathrm{μs}\left({\color{gray}-4.934 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id;zero_depth 10 entities $$14.8 \mathrm{ms} \pm 82.4 \mathrm{μs}\left({\color{gray}-2.844 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id;zero_depth 25 entities $$15.3 \mathrm{ms} \pm 74.9 \mathrm{μs}\left({\color{gray}-0.956 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id;zero_depth 5 entities $$14.9 \mathrm{ms} \pm 65.2 \mathrm{μs}\left({\color{gray}-1.985 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id;zero_depth 50 entities $$17.7 \mathrm{ms} \pm 98.1 \mathrm{μs}\left({\color{gray}-3.318 \mathrm{\%}}\right) $$ Flame Graph

read_scaling_linkless

Function Value Mean Flame graphs
entity_by_id 1 entities $$14.6 \mathrm{ms} \pm 67.2 \mathrm{μs}\left({\color{gray}-0.101 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id 10 entities $$14.7 \mathrm{ms} \pm 61.1 \mathrm{μs}\left({\color{gray}-1.524 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id 100 entities $$14.8 \mathrm{ms} \pm 69.6 \mathrm{μs}\left({\color{gray}-2.190 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id 1000 entities $$15.4 \mathrm{ms} \pm 118 \mathrm{μs}\left({\color{gray}-2.968 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id 10000 entities $$23.6 \mathrm{ms} \pm 168 \mathrm{μs}\left({\color{gray}1.60 \mathrm{\%}}\right) $$ Flame Graph

representative_read_entity

Function Value Mean Flame graphs
entity_by_id entity type ID: https://blockprotocol.org/@alice/types/entity-type/block/v/1 $$31.3 \mathrm{ms} \pm 279 \mathrm{μs}\left({\color{gray}2.56 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id entity type ID: https://blockprotocol.org/@alice/types/entity-type/book/v/1 $$30.4 \mathrm{ms} \pm 307 \mathrm{μs}\left({\color{gray}-2.513 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id entity type ID: https://blockprotocol.org/@alice/types/entity-type/building/v/1 $$29.7 \mathrm{ms} \pm 285 \mathrm{μs}\left({\color{lightgreen}-5.057 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id entity type ID: https://blockprotocol.org/@alice/types/entity-type/organization/v/1 $$29.2 \mathrm{ms} \pm 333 \mathrm{μs}\left({\color{gray}-4.596 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id entity type ID: https://blockprotocol.org/@alice/types/entity-type/page/v/2 $$31.5 \mathrm{ms} \pm 287 \mathrm{μs}\left({\color{gray}2.15 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id entity type ID: https://blockprotocol.org/@alice/types/entity-type/person/v/1 $$30.1 \mathrm{ms} \pm 276 \mathrm{μs}\left({\color{gray}-4.354 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id entity type ID: https://blockprotocol.org/@alice/types/entity-type/playlist/v/1 $$28.8 \mathrm{ms} \pm 259 \mathrm{μs}\left({\color{gray}-4.596 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id entity type ID: https://blockprotocol.org/@alice/types/entity-type/song/v/1 $$29.3 \mathrm{ms} \pm 288 \mathrm{μs}\left({\color{lightgreen}-5.052 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id entity type ID: https://blockprotocol.org/@alice/types/entity-type/uk-address/v/1 $$29.5 \mathrm{ms} \pm 266 \mathrm{μs}\left({\color{lightgreen}-6.983 \mathrm{\%}}\right) $$ Flame Graph

representative_read_entity_type

Function Value Mean Flame graphs
get_entity_type_by_id Account ID: bf5a9ef5-dc3b-43cf-a291-6210c0321eba $$8.04 \mathrm{ms} \pm 37.3 \mathrm{μs}\left({\color{gray}-2.547 \mathrm{\%}}\right) $$ Flame Graph

representative_read_multiple_entities

Function Value Mean Flame graphs
entity_by_property traversal_paths=0 0 $$48.4 \mathrm{ms} \pm 214 \mathrm{μs}\left({\color{gray}-1.137 \mathrm{\%}}\right) $$
entity_by_property traversal_paths=255 1,resolve_depths=inherit:1;values:255;properties:255;links:127;link_dests:126;type:true $$94.0 \mathrm{ms} \pm 489 \mathrm{μs}\left({\color{gray}-3.154 \mathrm{\%}}\right) $$
entity_by_property traversal_paths=2 1,resolve_depths=inherit:0;values:0;properties:0;links:0;link_dests:0;type:false $$53.2 \mathrm{ms} \pm 287 \mathrm{μs}\left({\color{gray}-2.553 \mathrm{\%}}\right) $$
entity_by_property traversal_paths=2 1,resolve_depths=inherit:0;values:0;properties:0;links:1;link_dests:0;type:true $$61.3 \mathrm{ms} \pm 369 \mathrm{μs}\left({\color{gray}-2.405 \mathrm{\%}}\right) $$
entity_by_property traversal_paths=2 1,resolve_depths=inherit:0;values:0;properties:2;links:1;link_dests:0;type:true $$68.7 \mathrm{ms} \pm 332 \mathrm{μs}\left({\color{gray}-3.361 \mathrm{\%}}\right) $$
entity_by_property traversal_paths=2 1,resolve_depths=inherit:0;values:2;properties:2;links:1;link_dests:0;type:true $$74.9 \mathrm{ms} \pm 639 \mathrm{μs}\left({\color{gray}-3.946 \mathrm{\%}}\right) $$
link_by_source_by_property traversal_paths=0 0 $$49.7 \mathrm{ms} \pm 261 \mathrm{μs}\left({\color{gray}-4.782 \mathrm{\%}}\right) $$
link_by_source_by_property traversal_paths=255 1,resolve_depths=inherit:1;values:255;properties:255;links:127;link_dests:126;type:true $$76.9 \mathrm{ms} \pm 367 \mathrm{μs}\left({\color{gray}-4.577 \mathrm{\%}}\right) $$
link_by_source_by_property traversal_paths=2 1,resolve_depths=inherit:0;values:0;properties:0;links:0;link_dests:0;type:false $$57.5 \mathrm{ms} \pm 380 \mathrm{μs}\left({\color{gray}-2.463 \mathrm{\%}}\right) $$
link_by_source_by_property traversal_paths=2 1,resolve_depths=inherit:0;values:0;properties:0;links:1;link_dests:0;type:true $$65.1 \mathrm{ms} \pm 444 \mathrm{μs}\left({\color{gray}-2.162 \mathrm{\%}}\right) $$
link_by_source_by_property traversal_paths=2 1,resolve_depths=inherit:0;values:0;properties:2;links:1;link_dests:0;type:true $$66.7 \mathrm{ms} \pm 290 \mathrm{μs}\left({\color{gray}-4.544 \mathrm{\%}}\right) $$
link_by_source_by_property traversal_paths=2 1,resolve_depths=inherit:0;values:2;properties:2;links:1;link_dests:0;type:true $$66.9 \mathrm{ms} \pm 366 \mathrm{μs}\left({\color{gray}-3.640 \mathrm{\%}}\right) $$

scenarios

Function Value Mean Flame graphs
full_test query-limited $$140 \mathrm{ms} \pm 705 \mathrm{μs}\left({\color{gray}4.23 \mathrm{\%}}\right) $$ Flame Graph
full_test query-unlimited $$138 \mathrm{ms} \pm 459 \mathrm{μs}\left({\color{gray}0.175 \mathrm{\%}}\right) $$ Flame Graph
linked_queries query-limited $$40.3 \mathrm{ms} \pm 202 \mathrm{μs}\left({\color{lightgreen}-61.997 \mathrm{\%}}\right) $$ Flame Graph
linked_queries query-unlimited $$600 \mathrm{ms} \pm 1.32 \mathrm{ms}\left({\color{gray}3.85 \mathrm{\%}}\right) $$ Flame Graph

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

area/libs Relates to first-party libraries/crates/packages (area) type/eng > backend Owned by the @backend team

Development

Successfully merging this pull request may close these issues.

3 participants