Skip to content

Conversation

@indietyp
Copy link
Member

🌟 What is the purpose of this PR?

Add benchmarks for the type system to measure performance of critical operations like subtyping, lattice operations, simplification, and type inference.

🔍 What does this change?

  • Adds a new benchmark suite for the type system using codspeed-criterion-compat
  • Creates benchmark groups for lattice operations, subtyping, simplification, and inference
  • Implements helper functions to properly manage heap allocations during benchmarking
  • Adds skeleton types to safely handle environment cleanup
  • Makes some previously test-only functions public to support benchmarking

Pre-Merge Checklist 🚀

🚢 Has this modified a publishable library?

This PR:

  • does not modify any publishable blocks or libraries, or modifications do not need publishing

📜 Does this require a change to the docs?

The changes in this PR:

  • are internal and do not require a docs change

🕸️ Does this require a change to the Turbo Graph?

The changes in this PR:

  • do not affect the execution graph

🛡 What tests cover this?

  • The benchmarks themselves serve as tests for the type system functionality

❓ How to test this?

  1. Run the benchmarks with cargo bench -p hashql-core
  2. Verify that all benchmark groups (lattice, subtyping, simplify, inference) execute successfully

@cursor
Copy link

cursor bot commented Dec 25, 2025

PR Summary

Adds a comprehensive benchmark suite for the type system and exposes lightweight "skeleton" representations to safely manage arena-backed environments during benchmarking.

  • New benches/type_system.rs benchmarking groups: lattice, subtyping, simplify, and inference, with helpers that reset the Heap per-iteration using BatchSize::PerIteration
  • Cargo.toml: adds codspeed-criterion-compat to dev-deps and registers the [[bench]] type_system target; package.json: adds build:codspeed and test:codspeed scripts
  • Introduces into_skeleton and skeletal types for environments: AnalysisEnvironmentSkeleton, SimplifyEnvironmentSkeleton, InferenceEnvironmentSkeleton, LatticeEnvironmentSkeleton, and VariableDependencyCollectorSkeleton
  • Lattice env gains without_warnings() and now records circular-type diagnostics only when warnings are enabled
  • Makes previously test-only constructors public/const: Ident::synthetic and Variable::synthetic
  • Replaces RefCell with LocalLock in ProvisionedScope for RAII cleanup, updating accessors (enter, exit, get_substitution, get_source, is_used)

Written by Cursor Bugbot for commit 743bec5. This will update automatically on new commits. Configure here.

Copy link
Member Author

indietyp commented Dec 25, 2025

This stack of pull requests is managed by Graphite. Learn more about stacking.

@vercel vercel bot temporarily deployed to Preview – petrinaut December 25, 2025 17:16 Inactive
@augmentcode
Copy link

augmentcode bot commented Dec 25, 2025

🤖 Augment PR Summary

Summary: Adds a dedicated benchmark suite for HashQL’s type system to measure performance of core operations (lattice, subtyping, simplification, inference).

Changes:

  • Adds a new hashql-core benchmark target (benches/type_system.rs) using codspeed-criterion-compat, with groups for join/meet, subtyping, simplification, and solver runs.
  • Introduces a heap/environment benchmarking harness that resets the arena each iteration (via iter_batched_ref + BatchSize::PerIteration) to avoid UAF while reusing allocations.
  • Adds “skeleton” types and into_skeleton() helpers on type environments to delay large drops and keep per-iteration teardown predictable.
  • Adds LatticeEnvironment::without_warnings() / warnings_enabled to suppress non-fatal diagnostics during benchmarking.
  • Refactors provisional mapping internals from RefCell to LocalLock in context/provision.rs.
  • Makes Ident::synthetic and Variable::synthetic public (and #[must_use]) so benches can construct synthetic values.

Technical Notes: The benchmark harness uses a small amount of unsafe (raw heap pointer) but documents the soundness assumptions (single-threaded + per-iteration batching).

🤖 Was this summary useful? React with 👍 or 👎

Copy link

@augmentcode augmentcode bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Review completed. No suggestions at this time.

Comment augment review to trigger a new review at any time.

@codspeed-hq
Copy link

codspeed-hq bot commented Dec 25, 2025

CodSpeed Performance Report

Merging this PR will not alter performance

Comparing bm/be-259-hashql-write-type-system-benchmarks (743bec5) with bm/be-227-hashql-implement-call-graph (3fcfaaf)

Summary

✅ 14 untouched benchmarks
🗄️ 15 archived benchmarks run1

Footnotes

  1. 15 benchmarks were run, but are now archived. If they were deleted in another branch, consider rebasing to remove them from the report. Instead if they were added back, click here to restore them.

@codecov
Copy link

codecov bot commented Dec 25, 2025

Codecov Report

❌ Patch coverage is 91.93548% with 25 lines in your changes missing coverage. Please review.
✅ Project coverage is 59.36%. Comparing base (86f263f) to head (743bec5).
⚠️ Report is 4 commits behind head on main.

Files with missing lines Patch % Lines
...ocal/hashql/mir/src/pass/analysis/callgraph/mod.rs 73.91% 18 Missing ⚠️
...ibs/@local/hashql/mir/src/body/terminator/graph.rs 0.00% 6 Missing ⚠️
libs/@local/hashql/mir/src/visit/mut.rs 50.00% 1 Missing ⚠️
Additional details and impacted files
@@            Coverage Diff             @@
##             main    #8216      +/-   ##
==========================================
+ Coverage   59.26%   59.36%   +0.10%     
==========================================
  Files        1191     1195       +4     
  Lines      113436   113770     +334     
  Branches     4982     4985       +3     
==========================================
+ Hits        67232    67544     +312     
- Misses      45428    45450      +22     
  Partials      776      776              
Flag Coverage Δ
local.claude-hooks 0.00% <ø> (ø)
local.hash-isomorphic-utils 0.00% <ø> (ø)
rust.antsi 0.00% <ø> (ø)
rust.error-stack 90.88% <ø> (ø)
rust.harpc-codec 84.70% <ø> (ø)
rust.harpc-tower 66.80% <ø> (ø)
rust.harpc-types 0.00% <ø> (ø)
rust.harpc-wire-protocol 92.23% <ø> (ø)
rust.hash-graph-api 2.89% <ø> (ø)
rust.hash-graph-authorization 62.47% <ø> (ø)
rust.hash-graph-postgres-store 25.61% <ø> (ø)
rust.hash-graph-temporal-versioning 47.95% <ø> (ø)
rust.hash-graph-types 0.00% <ø> (ø)
rust.hash-graph-validation 83.45% <ø> (ø)
rust.hashql-compiletest 46.65% <ø> (ø)
rust.hashql-mir 88.51% <91.93%> (+0.21%) ⬆️
rust.hashql-syntax-jexpr 94.05% <ø> (-0.01%) ⬇️

Flags with carried forward coverage won't be shown. Click here to find out more.

☔ View full report in Codecov by Sentry.
📢 Have feedback on the report? Share it here.

🚀 New features to boost your workflow:
  • ❄️ Test Analytics: Detect flaky tests, report on failures, and find test suite problems.
  • 📦 JS Bundle Analysis: Save yourself from yourself by tracking and limiting bundle sizes in JS merges.

@github-actions
Copy link
Contributor

Benchmark results

@rust/hash-graph-benches – Integrations

policy_resolution_large

Function Value Mean Flame graphs
resolve_policies_for_actor user: empty, selectivity: high, policies: 2002 $$28.3 \mathrm{ms} \pm 226 \mathrm{μs}\left({\color{red}8.92 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: empty, selectivity: low, policies: 1 $$3.30 \mathrm{ms} \pm 30.2 \mathrm{μs}\left({\color{gray}1.41 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: empty, selectivity: medium, policies: 1001 $$12.0 \mathrm{ms} \pm 66.2 \mathrm{μs}\left({\color{gray}1.71 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: seeded, selectivity: high, policies: 3314 $$41.8 \mathrm{ms} \pm 273 \mathrm{μs}\left({\color{gray}-0.617 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: seeded, selectivity: low, policies: 1 $$13.7 \mathrm{ms} \pm 77.0 \mathrm{μs}\left({\color{gray}-0.103 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: seeded, selectivity: medium, policies: 1526 $$22.9 \mathrm{ms} \pm 138 \mathrm{μs}\left({\color{gray}-0.873 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: system, selectivity: high, policies: 2078 $$29.6 \mathrm{ms} \pm 197 \mathrm{μs}\left({\color{lightgreen}-30.599 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: system, selectivity: low, policies: 1 $$3.62 \mathrm{ms} \pm 18.1 \mathrm{μs}\left({\color{lightgreen}-81.915 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: system, selectivity: medium, policies: 1033 $$13.3 \mathrm{ms} \pm 74.6 \mathrm{μs}\left({\color{lightgreen}-52.215 \mathrm{\%}}\right) $$ Flame Graph

policy_resolution_medium

Function Value Mean Flame graphs
resolve_policies_for_actor user: empty, selectivity: high, policies: 102 $$3.63 \mathrm{ms} \pm 19.4 \mathrm{μs}\left({\color{gray}0.726 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: empty, selectivity: low, policies: 1 $$2.82 \mathrm{ms} \pm 9.53 \mathrm{μs}\left({\color{gray}0.061 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: empty, selectivity: medium, policies: 51 $$3.19 \mathrm{ms} \pm 16.2 \mathrm{μs}\left({\color{gray}0.428 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: seeded, selectivity: high, policies: 269 $$4.97 \mathrm{ms} \pm 25.7 \mathrm{μs}\left({\color{gray}0.808 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: seeded, selectivity: low, policies: 1 $$3.39 \mathrm{ms} \pm 17.0 \mathrm{μs}\left({\color{gray}0.917 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: seeded, selectivity: medium, policies: 107 $$3.98 \mathrm{ms} \pm 23.1 \mathrm{μs}\left({\color{gray}0.516 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: system, selectivity: high, policies: 133 $$4.25 \mathrm{ms} \pm 23.5 \mathrm{μs}\left({\color{gray}-0.040 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: system, selectivity: low, policies: 1 $$3.28 \mathrm{ms} \pm 15.3 \mathrm{μs}\left({\color{gray}0.672 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: system, selectivity: medium, policies: 63 $$3.93 \mathrm{ms} \pm 27.3 \mathrm{μs}\left({\color{gray}1.58 \mathrm{\%}}\right) $$ Flame Graph

policy_resolution_none

Function Value Mean Flame graphs
resolve_policies_for_actor user: empty, selectivity: high, policies: 2 $$2.64 \mathrm{ms} \pm 12.4 \mathrm{μs}\left({\color{red}11.8 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: empty, selectivity: low, policies: 1 $$2.59 \mathrm{ms} \pm 9.90 \mathrm{μs}\left({\color{red}11.0 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: empty, selectivity: medium, policies: 1 $$2.69 \mathrm{ms} \pm 12.7 \mathrm{μs}\left({\color{red}10.2 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: system, selectivity: high, policies: 8 $$2.84 \mathrm{ms} \pm 11.8 \mathrm{μs}\left({\color{red}7.92 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: system, selectivity: low, policies: 1 $$2.74 \mathrm{ms} \pm 10.2 \mathrm{μs}\left({\color{red}9.20 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: system, selectivity: medium, policies: 3 $$2.94 \mathrm{ms} \pm 11.3 \mathrm{μs}\left({\color{red}9.22 \mathrm{\%}}\right) $$ Flame Graph

policy_resolution_small

Function Value Mean Flame graphs
resolve_policies_for_actor user: empty, selectivity: high, policies: 52 $$2.94 \mathrm{ms} \pm 13.5 \mathrm{μs}\left({\color{red}6.53 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: empty, selectivity: low, policies: 1 $$2.63 \mathrm{ms} \pm 10.7 \mathrm{μs}\left({\color{red}9.06 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: empty, selectivity: medium, policies: 25 $$2.80 \mathrm{ms} \pm 13.2 \mathrm{μs}\left({\color{red}9.20 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: seeded, selectivity: high, policies: 94 $$3.27 \mathrm{ms} \pm 13.8 \mathrm{μs}\left({\color{red}5.81 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: seeded, selectivity: low, policies: 1 $$2.88 \mathrm{ms} \pm 13.6 \mathrm{μs}\left({\color{red}7.78 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: seeded, selectivity: medium, policies: 26 $$3.07 \mathrm{ms} \pm 10.1 \mathrm{μs}\left({\color{red}6.64 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: system, selectivity: high, policies: 66 $$3.18 \mathrm{ms} \pm 15.3 \mathrm{μs}\left({\color{red}6.27 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: system, selectivity: low, policies: 1 $$2.84 \mathrm{ms} \pm 8.59 \mathrm{μs}\left({\color{red}8.04 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: system, selectivity: medium, policies: 29 $$3.07 \mathrm{ms} \pm 13.7 \mathrm{μs}\left({\color{red}6.91 \mathrm{\%}}\right) $$ Flame Graph

read_scaling_complete

Function Value Mean Flame graphs
entity_by_id;one_depth 1 entities $$38.5 \mathrm{ms} \pm 168 \mathrm{μs}\left({\color{gray}1.25 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id;one_depth 10 entities $$75.7 \mathrm{ms} \pm 278 \mathrm{μs}\left({\color{gray}-0.119 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id;one_depth 25 entities $$43.5 \mathrm{ms} \pm 184 \mathrm{μs}\left({\color{gray}4.34 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id;one_depth 5 entities $$45.1 \mathrm{ms} \pm 164 \mathrm{μs}\left({\color{gray}0.046 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id;one_depth 50 entities $$53.3 \mathrm{ms} \pm 267 \mathrm{μs}\left({\color{gray}2.17 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id;two_depth 1 entities $$39.5 \mathrm{ms} \pm 181 \mathrm{μs}\left({\color{gray}-0.807 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id;two_depth 10 entities $$417 \mathrm{ms} \pm 863 \mathrm{μs}\left({\color{gray}-0.343 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id;two_depth 25 entities $$94.4 \mathrm{ms} \pm 438 \mathrm{μs}\left({\color{gray}0.133 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id;two_depth 5 entities $$84.1 \mathrm{ms} \pm 368 \mathrm{μs}\left({\color{gray}-0.250 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id;two_depth 50 entities $$312 \mathrm{ms} \pm 1.68 \mathrm{ms}\left({\color{red}13.7 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id;zero_depth 1 entities $$15.2 \mathrm{ms} \pm 79.7 \mathrm{μs}\left({\color{gray}3.86 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id;zero_depth 10 entities $$14.9 \mathrm{ms} \pm 71.3 \mathrm{μs}\left({\color{gray}1.05 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id;zero_depth 25 entities $$14.8 \mathrm{ms} \pm 68.6 \mathrm{μs}\left({\color{gray}-0.340 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id;zero_depth 5 entities $$16.3 \mathrm{ms} \pm 425 \mathrm{μs}\left({\color{red}12.5 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id;zero_depth 50 entities $$17.7 \mathrm{ms} \pm 81.4 \mathrm{μs}\left({\color{gray}1.79 \mathrm{\%}}\right) $$ Flame Graph

read_scaling_linkless

Function Value Mean Flame graphs
entity_by_id 1 entities $$14.5 \mathrm{ms} \pm 71.7 \mathrm{μs}\left({\color{gray}-2.497 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id 10 entities $$14.7 \mathrm{ms} \pm 61.9 \mathrm{μs}\left({\color{gray}1.81 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id 100 entities $$14.5 \mathrm{ms} \pm 52.0 \mathrm{μs}\left({\color{gray}1.02 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id 1000 entities $$15.2 \mathrm{ms} \pm 65.5 \mathrm{μs}\left({\color{gray}1.76 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id 10000 entities $$22.0 \mathrm{ms} \pm 139 \mathrm{μs}\left({\color{gray}0.860 \mathrm{\%}}\right) $$ Flame Graph

representative_read_entity

Function Value Mean Flame graphs
entity_by_id entity type ID: https://blockprotocol.org/@alice/types/entity-type/block/v/1 $$29.6 \mathrm{ms} \pm 281 \mathrm{μs}\left({\color{gray}0.049 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id entity type ID: https://blockprotocol.org/@alice/types/entity-type/book/v/1 $$29.7 \mathrm{ms} \pm 281 \mathrm{μs}\left({\color{gray}1.32 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id entity type ID: https://blockprotocol.org/@alice/types/entity-type/building/v/1 $$30.0 \mathrm{ms} \pm 253 \mathrm{μs}\left({\color{gray}4.44 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id entity type ID: https://blockprotocol.org/@alice/types/entity-type/organization/v/1 $$29.3 \mathrm{ms} \pm 251 \mathrm{μs}\left({\color{gray}0.166 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id entity type ID: https://blockprotocol.org/@alice/types/entity-type/page/v/2 $$29.6 \mathrm{ms} \pm 275 \mathrm{μs}\left({\color{gray}3.98 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id entity type ID: https://blockprotocol.org/@alice/types/entity-type/person/v/1 $$29.3 \mathrm{ms} \pm 285 \mathrm{μs}\left({\color{gray}-0.206 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id entity type ID: https://blockprotocol.org/@alice/types/entity-type/playlist/v/1 $$28.4 \mathrm{ms} \pm 274 \mathrm{μs}\left({\color{gray}0.237 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id entity type ID: https://blockprotocol.org/@alice/types/entity-type/song/v/1 $$30.1 \mathrm{ms} \pm 252 \mathrm{μs}\left({\color{gray}2.13 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id entity type ID: https://blockprotocol.org/@alice/types/entity-type/uk-address/v/1 $$28.8 \mathrm{ms} \pm 237 \mathrm{μs}\left({\color{gray}2.07 \mathrm{\%}}\right) $$ Flame Graph

representative_read_entity_type

Function Value Mean Flame graphs
get_entity_type_by_id Account ID: bf5a9ef5-dc3b-43cf-a291-6210c0321eba $$8.04 \mathrm{ms} \pm 35.2 \mathrm{μs}\left({\color{gray}1.07 \mathrm{\%}}\right) $$ Flame Graph

representative_read_multiple_entities

Function Value Mean Flame graphs
entity_by_property traversal_paths=0 0 $$46.9 \mathrm{ms} \pm 546 \mathrm{μs}\left({\color{red}5.16 \mathrm{\%}}\right) $$
entity_by_property traversal_paths=255 1,resolve_depths=inherit:1;values:255;properties:255;links:127;link_dests:126;type:true $$93.2 \mathrm{ms} \pm 374 \mathrm{μs}\left({\color{gray}1.36 \mathrm{\%}}\right) $$
entity_by_property traversal_paths=2 1,resolve_depths=inherit:0;values:0;properties:0;links:0;link_dests:0;type:false $$52.3 \mathrm{ms} \pm 306 \mathrm{μs}\left({\color{gray}3.53 \mathrm{\%}}\right) $$
entity_by_property traversal_paths=2 1,resolve_depths=inherit:0;values:0;properties:0;links:1;link_dests:0;type:true $$60.2 \mathrm{ms} \pm 336 \mathrm{μs}\left({\color{gray}3.54 \mathrm{\%}}\right) $$
entity_by_property traversal_paths=2 1,resolve_depths=inherit:0;values:0;properties:2;links:1;link_dests:0;type:true $$67.4 \mathrm{ms} \pm 350 \mathrm{μs}\left({\color{gray}1.28 \mathrm{\%}}\right) $$
entity_by_property traversal_paths=2 1,resolve_depths=inherit:0;values:2;properties:2;links:1;link_dests:0;type:true $$74.2 \mathrm{ms} \pm 424 \mathrm{μs}\left({\color{gray}1.62 \mathrm{\%}}\right) $$
link_by_source_by_property traversal_paths=0 0 $$48.8 \mathrm{ms} \pm 197 \mathrm{μs}\left({\color{gray}0.611 \mathrm{\%}}\right) $$
link_by_source_by_property traversal_paths=255 1,resolve_depths=inherit:1;values:255;properties:255;links:127;link_dests:126;type:true $$76.1 \mathrm{ms} \pm 348 \mathrm{μs}\left({\color{gray}1.13 \mathrm{\%}}\right) $$
link_by_source_by_property traversal_paths=2 1,resolve_depths=inherit:0;values:0;properties:0;links:0;link_dests:0;type:false $$55.4 \mathrm{ms} \pm 247 \mathrm{μs}\left({\color{gray}-1.058 \mathrm{\%}}\right) $$
link_by_source_by_property traversal_paths=2 1,resolve_depths=inherit:0;values:0;properties:0;links:1;link_dests:0;type:true $$63.6 \mathrm{ms} \pm 370 \mathrm{μs}\left({\color{gray}1.66 \mathrm{\%}}\right) $$
link_by_source_by_property traversal_paths=2 1,resolve_depths=inherit:0;values:0;properties:2;links:1;link_dests:0;type:true $$65.5 \mathrm{ms} \pm 344 \mathrm{μs}\left({\color{gray}1.07 \mathrm{\%}}\right) $$
link_by_source_by_property traversal_paths=2 1,resolve_depths=inherit:0;values:2;properties:2;links:1;link_dests:0;type:true $$65.4 \mathrm{ms} \pm 315 \mathrm{μs}\left({\color{gray}0.633 \mathrm{\%}}\right) $$

scenarios

Function Value Mean Flame graphs
full_test query-limited $$131 \mathrm{ms} \pm 394 \mathrm{μs}\left({\color{lightgreen}-5.024 \mathrm{\%}}\right) $$ Flame Graph
full_test query-unlimited $$131 \mathrm{ms} \pm 469 \mathrm{μs}\left({\color{gray}-3.124 \mathrm{\%}}\right) $$ Flame Graph
linked_queries query-limited $$38.5 \mathrm{ms} \pm 187 \mathrm{μs}\left({\color{lightgreen}-10.017 \mathrm{\%}}\right) $$ Flame Graph
linked_queries query-unlimited $$546 \mathrm{ms} \pm 854 \mathrm{μs}\left({\color{gray}-3.777 \mathrm{\%}}\right) $$ Flame Graph

@vercel
Copy link

vercel bot commented Jan 15, 2026

The latest updates on your projects. Learn more about Vercel for GitHub.

2 Skipped Deployments
Project Deployment Review Updated (UTC)
ds-theme Ignored Ignored Preview Jan 16, 2026 10:39am
hashdotdesign Ignored Ignored Preview Jan 16, 2026 10:39am

Copy link
Member Author

indietyp commented Jan 16, 2026

Merge activity

  • Jan 16, 12:45 PM UTC: A user started a stack merge that includes this pull request via Graphite.
  • Jan 16, 12:45 PM UTC: @indietyp added this pull request to the GitHub merge queue with Graphite.

@indietyp indietyp added this pull request to the merge queue Jan 16, 2026
Merged via the queue into main with commit bf829ac Jan 16, 2026
161 checks passed
@indietyp indietyp deleted the bm/be-259-hashql-write-type-system-benchmarks branch January 16, 2026 13:06
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

area/deps Relates to third-party dependencies (area) area/libs Relates to first-party libraries/crates/packages (area) type/eng > backend Owned by the @backend team

Development

Successfully merging this pull request may close these issues.

3 participants