Seungjae Baek*
·
Brady Moon*
·
Seungchan Kim*
Muqing Cao
·
Cherie Ho
·
Sebastian Scherer
·
Jeong hwan Jeon
Paper | Project Page | Video
Clone the repository as below.
git clone --branch init-import --single-branch https://github.com/castacks/pipe-planner.git
cd pipe-planner
Create environment with the name 'pipe' from lama's conda_env.yml
conda env create -n pipe -f lama/conda_env.yml
conda activate pipe
cd range_libc/pywrapper
# Install build dependencies (if needed)
conda install -y cython
# Build and install
python setup.py install
# Verify installation
cd ../..
python -c "import range_libc; print('range_libc installed successfully')"
You can download pretrained models from this link. Place the zip file under pretrained_models directory and unzip the file.
mv ~/Downloads/weights.zip ~/pipe-planner/pretrained_models/
cd ~/pipe-planner/pretrained_models/
unzip weights.zip
The pretrained_model directory and its subdirectories should be organized as below:
pipe-planner
├── pretrained_models
├── weights
├── big_lama
├── models
├── best.ckpt
├── lama_ensemble
├── train_1
├── models
├── best.ckpt
├── train_2
├── models
├── best.ckpt
├── train_3
├── models
├── best.ckpt
In configs/base.yaml, you can manually select map, starting pose, and planning method. All map information and starting points available at here.
If true, your algorithm runs until reaching the maximum time step budget (1500 for small maps, 3000 for medium maps, and 6000 for large maps), or reaching the 95% IoU. It saves the IoU score per 20 time steps and when reaching 90% and 95% IoU. If false, the algorithms for designated 'mission_time' time step.
Run the 'explore.py' script as below:
cd ../scripts/
python3 explore.py
If you find our paper or code useful, please cite us:
@inproceedings{baek2025pipe,
author={Baek, Seungjae and Moon, Brady and Kim, Seungchan and Cao, Muqing and Ho, Cherie and Scherer, Sebastian and Jeon, Jeong Hwan},
booktitle={2025 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)},
title={PIPE Planner: Pathwise Information Gain with Map Predictions for Indoor Robot Exploration},
year={2025},
pages={7684-7691},
doi={10.1109/IROS60139.2025.11246190}}