Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
96 changes: 46 additions & 50 deletions tests/test_plot.py
Original file line number Diff line number Diff line change
Expand Up @@ -190,8 +190,8 @@ def test_compare_models_with_different_versions(matplotlib_version):
# minimum version of matplotlib
minimum_version = "3.6"

if packaging.version.parse(
matplotlib_version) < packaging.version.parse(minimum_version):
if packaging.version.parse(matplotlib_version) < packaging.version.parse(
minimum_version):
with pytest.raises(ImportError):
cebra_plot.compare_models(models=fitted_models,
patched_version=matplotlib_version)
Expand Down Expand Up @@ -359,9 +359,6 @@ def test_plot_consistency():

dataset_ids = ["achilles", "buddy", "cicero", "gatsby"]

figure = plt.figure(figsize=(5, 5))
ax = figure.add_subplot()

scores_subs, pairs_subs, datasets_subs = cebra_sklearn_metrics.consistency_score(
embeddings_datasets,
labels=labels_datasets,
Expand All @@ -371,17 +368,21 @@ def test_plot_consistency():
scores_runs, pairs_runs, datasets_runs = cebra_sklearn_metrics.consistency_score(
embeddings_runs, between="runs")

# ------------------------------------------------------------

# between datasets
fig = cebra_plot.plot_consistency(scores_subs,
pairs=pairs_subs,
datasets=datasets_subs)
assert isinstance(fig, matplotlib.axes.Axes)
ax = cebra_plot.plot_consistency(scores_subs,
pairs=pairs_subs,
datasets=datasets_subs)
assert isinstance(ax, matplotlib.axes.Axes)
plt.close()

ax = cebra_plot.plot_consistency(scores_subs,
pairs=pairs_subs,
datasets=datasets_subs,
ax=ax)
datasets=datasets_subs)
assert isinstance(ax, matplotlib.axes.Axes)
plt.close()

ax = cebra_plot.plot_consistency(
torch.from_numpy(scores_subs),
pairs=pairs_subs,
Expand All @@ -390,119 +391,114 @@ def test_plot_consistency():
title="Test",
text_color=None,
colorbar_label=None,
ax=ax,
)
assert isinstance(fig, matplotlib.axes.Axes)
assert isinstance(ax, matplotlib.axes.Axes)
plt.close()

ax = cebra_plot.plot_consistency(torch.from_numpy(scores_subs),
pairs=pairs_subs,
datasets=datasets_subs,
ax=ax)
assert isinstance(fig, matplotlib.axes.Axes)
datasets=datasets_subs)
assert isinstance(ax, matplotlib.axes.Axes)
plt.close()

ax = cebra_plot.plot_consistency(
scores_subs.tolist(),
pairs=pairs_subs.tolist(),
datasets=datasets_subs.tolist(),
ax=ax,
)
assert isinstance(fig, matplotlib.axes.Axes)
assert isinstance(ax, matplotlib.axes.Axes)
plt.close()

with pytest.raises(ValueError, match="Missing.*datasets.*pairs"):
_ = cebra_plot.plot_consistency(scores_subs, ax=ax)
_ = cebra_plot.plot_consistency(scores_subs)
with pytest.raises(ValueError, match="Missing.*datasets.*pairs"):
_ = cebra_plot.plot_consistency(scores_subs, pairs=pairs_subs, ax=ax)
_ = cebra_plot.plot_consistency(scores_subs, pairs=pairs_subs)
with pytest.raises(ValueError, match="Missing.*datasets.*pairs"):
_ = cebra_plot.plot_consistency(scores_subs,
datasets=datasets_subs,
ax=ax)
_ = cebra_plot.plot_consistency(scores_subs, datasets=datasets_subs)
with pytest.raises(ValueError, match="Shape.*pairs"):
_ = cebra_plot.plot_consistency(
scores_subs,
pairs=np.random.uniform(0, 1, (10, 2)),
datasets=datasets_subs,
ax=ax,
)
with pytest.raises(ValueError, match="Shape.*datasets"):
_ = cebra_plot.plot_consistency(
scores_subs,
pairs=np.random.uniform(0, 1, (10, 2)),
datasets=np.random.uniform(0, 1, (2,)),
ax=ax,
)
with pytest.raises(ValueError, match="Invalid.*scores"):
_ = cebra_plot.plot_consistency(
np.random.uniform(0, 1, (12, 2, 2)),
pairs=pairs_subs,
datasets=datasets_subs,
ax=ax,
)
plt.close("all")

# between runs
fig = cebra_plot.plot_consistency(scores_runs,
pairs=pairs_runs,
datasets=datasets_runs)
assert isinstance(fig, matplotlib.axes.Axes)
plt.close()
ax = cebra_plot.plot_consistency(scores_runs,
pairs=pairs_runs,
datasets=datasets_runs,
ax=ax)
datasets=datasets_runs)
assert isinstance(ax, matplotlib.axes.Axes)
plt.close()

ax = cebra_plot.plot_consistency(
scores_runs,
pairs=pairs_runs,
datasets=datasets_runs,
cmap="viridis",
title="Test",
text_color=None,
colorbar_label=None,
ax=ax,
)
assert isinstance(ax, matplotlib.axes.Axes)
ax = cebra_plot.plot_consistency(torch.from_numpy(scores_runs),
plt.close()

ax = cebra_plot.plot_consistency(scores_runs,
pairs=pairs_runs,
datasets=datasets_runs,
ax=ax)
cmap="viridis",
title="Test",
text_color=None,
colorbar_label=None)
assert isinstance(ax, matplotlib.axes.Axes)
plt.close()

ax = cebra_plot.plot_consistency(torch.from_numpy(scores_runs),
pairs=pairs_runs,
datasets=datasets_runs)
assert isinstance(ax, matplotlib.axes.Axes)
plt.close()

ax = cebra_plot.plot_consistency(
scores_runs.tolist(),
pairs=pairs_runs.tolist(),
datasets=datasets_runs.tolist(),
ax=ax,
)
assert isinstance(ax, matplotlib.axes.Axes)
plt.close()

with pytest.raises(ValueError, match="Missing.*datasets.*pairs"):
_ = cebra_plot.plot_consistency(scores_runs, ax=ax)
_ = cebra_plot.plot_consistency(scores_runs)
with pytest.raises(ValueError, match="Missing.*datasets.*pairs"):
_ = cebra_plot.plot_consistency(scores_runs, pairs=pairs_runs, ax=ax)
_ = cebra_plot.plot_consistency(scores_runs, pairs=pairs_runs)
with pytest.raises(ValueError, match="Missing.*datasets.*pairs"):
_ = cebra_plot.plot_consistency(scores_runs,
datasets=datasets_runs,
ax=ax)
_ = cebra_plot.plot_consistency(scores_runs, datasets=datasets_runs)
with pytest.raises(ValueError, match="Shape.*datasets"):
_ = cebra_plot.plot_consistency(
scores_runs,
pairs=np.random.uniform(0, 1, (10, 2)),
datasets=np.random.uniform(0, 1, (4,)),
ax=ax,
)
with pytest.raises(ValueError, match="Shape.*pairs"):
_ = cebra_plot.plot_consistency(
scores_runs,
pairs=np.random.uniform(0, 1, (10, 2)),
datasets=datasets_runs,
ax=ax,
)
with pytest.raises(ValueError, match="Invalid.*dimensions"):
_ = cebra_plot.plot_consistency(
np.random.uniform(0, 1, (12, 2, 2)),
pairs=pairs_runs,
datasets=datasets_runs,
ax=ax,
)
plt.close()
plt.close("all")


@pytest.mark.parametrize("seed", [None, 42, 1024, 454545])
Expand Down