Educational repository for deep CS, ML, Cybersec.
- C: GCC or another C compiler
- Rust: Rust compiler and cargo (install from https://rustup.rs/)
- Assembly: NASM assembler and ld linker
- CUDA: NVIDIA CUDA Toolkit and compatible GPU
gcc --version
gcc hello/C/hello.c -o hello/bin/C
./hello/bin/Crustc --version
cargo --version
rustc hello/rust/hello.rs -o hello/bin/rust
./hello/bin/rustas --version
ld --version
as hello/assembly/hello.s -o hello/assembly/hello.o
ld hello/assembly/hello.o -o hello/bin/assembly
./hello/bin/assemblynvcc --version
nvidia-smi
nvcc hello/cuda/hello.cu -o hello/bin/cuda
./hello/bin/cuda%%{init: {'theme': 'base', 'themeVariables': { 'primaryColor': '#ffdfd3', 'edgeLabelBackground':'#fff', 'tertiaryColor': '#fff0f0'}}}%%
mindmap
root((Mathematical Foundations<br>for Deep CS, ML, and Cryptography))
Overview
Comprehensive learning plan
Covers ML, cryptography, CS fundamentals
Core Mathematical Foundations
Phase 1: Essential Mathematics
Linear Algebra
Vectors, matrices, eigenvalues
Applications: Neural networks, graphics
Calculus
Limits, derivatives, integrals
Applications: Optimization, gradient descent
Probability & Statistics
Distributions, hypothesis testing
Applications: Statistical ML, security
Discrete Mathematics
Logic, graph theory, combinatorics
Applications: Algorithms, data structures
Phase 2: Advanced Topics
Abstract Algebra
Groups, rings, fields
Applications: Cryptography, quantum computing
Number Theory
Modular arithmetic, primes
Applications: Public-key crypto, blockchain
Information Theory
Entropy, mutual information
Applications: Compression, ML
Optimization Theory
Convex optimization, gradient methods
Applications: Training ML models
Specialized Tracks
Machine Learning Mathematics
Functional analysis, kernels, statistical learning
Cryptography & Blockchain Mathematics
Elliptic curves, zero-knowledge proofs, hashing
Theoretical Computer Science
Computability, complexity, automata, type theory
Learning Approach
Foundations First
Practice Problems
Applied Projects
Paper Reading
Interdisciplinary Connections
Suggested Learning Projects
Implement cryptographic primitives
Build neural networks from scratch
Visualization tools
Implement ML algorithms
Develop blockchain primitives
Assessment Strategies
Implement algorithms in C/Rust/CUDA
Reproduce paper results
Create teaching notebooks
Contribute to open-source