tf-dialect is an MCP (Model Context Protocol) server that exposes your organization's Terraform style guide to AI coding agents, ensuring they generate context-aware, organization-specific Infrastructure as Code instead of generic HCL.
Configure once, use with any MCP-capable coding agent (Claude Desktop, Cline, etc.).
# Clone the repository
git clone https://github.com/utpaljaynadiger/tf-dialect.git
cd tf-dialect
# Install dependencies
npm install
# Build the project
npm run build
# Create your style configuration
cp terraform-style.example.yaml terraform-style.yaml
# Edit terraform-style.yaml with your organization's standards
# Then configure in your MCP client (see "Running the Server" section)AI coding assistants generate generic Terraform code that violates your org's standards. Your existing tools (tflint, Sentinel, module registries) are reactiveβthey catch violations after code is written. Developers waste cycles fixing preventable issues.
tf-dialect exposes your Terraform standards to AI agents via MCP before code generation. AI learns your naming conventions, required tags, approved modules, and security defaults, then generates compliant code on first try.
Without tf-dialect:
# AI generates generic code
resource "aws_s3_bucket" "logs" {
bucket = "my-logs-bucket"
}
# β Wrong naming, missing tags, no encryption, not using approved module
# β 3 commits to fix tflint/Sentinel violationsWith tf-dialect:
# AI calls get_style_guide() + list_examples() first
module "logs_bucket" {
source = "../modules/s3-bucket"
name = "acme-prod-logs"
kms_key_id = data.aws_kms_key.standard.arn
tags = {
CostCenter = "engineering"
Team = "platform"
Environment = "prod"
}
}
# β
Passes all checks on first commit| Tool | Phase | Purpose |
|---|---|---|
| tf-dialect | Pre-generation | Teach AI your standards |
| Module Registry | Reference | Provide reusable modules |
| tflint/checkov | Post-generation | Static analysis |
| Sentinel/OPA | Runtime | Policy enforcement |
tf-dialect is complementaryβit makes AI agents aware of your module registry and helps generate code that passes your existing validation tools.
- Platform teams: Standardizing AI-generated IaC across your org
- Developers: Using Claude/Copilot/ChatGPT for Terraform
- Organizations: With existing Terraform standards that AI doesn't know about
- π Style Guide Management: Define your Terraform conventions in a single YAML file
- π Validation: Check Terraform snippets against your organization's rules
- π Code Examples: Provide reusable snippets for common patterns
- π‘οΈ Security Defaults: Enforce security best practices automatically
- ποΈ Code Generation: Generate compliant Terraform resources
- π€ AI-Native: Works seamlessly with MCP-capable coding agents
npm install
npm run build- Copy the example config:
cp terraform-style.example.yaml terraform-style.yaml- Edit
terraform-style.yamlto match your organization's standards:
modules:
pattern: "root + shared-modules"
shared_module_path: "modules/"
prefer_shared_modules: true
naming:
resource_format: "<project>-<env>-<component>-<extra?>"
variable_case: "snake_case"
output_case: "snake_case"
tagging:
required_tags:
- "environment"
- "owner"
- "cost_center"
defaults:
environment: "${var.environment}"
owner: "infra-team"
security_defaults:
s3_bucket:
block_public_acls: true
versioning: true
encryption: "aws:kms"
rds:
storage_encrypted: true
backup_retention_period: 7
examples:
s3_private_bucket: |
module "logs_bucket" {
source = "../modules/s3-bucket"
name = "${local.project}-${var.environment}-logs"
tags = local.default_tags
}npm run mcpAdd to your Claude Desktop config (~/Library/Application Support/Claude/claude_desktop_config.json on macOS):
{
"mcpServers": {
"tf-dialect": {
"command": "node",
"args": ["/absolute/path/to/tf-dialect/dist/index.js"],
"env": {
"TERRAFORM_STYLE_PATH": "/absolute/path/to/your/terraform-style.yaml"
}
}
}
}Or if terraform-style.yaml is in the same directory as the server:
{
"mcpServers": {
"tf-dialect": {
"command": "node",
"args": ["/absolute/path/to/tf-dialect/dist/index.js"]
}
}
}Add to your MCP settings:
{
"mcpServers": {
"tf-dialect": {
"command": "node",
"args": ["/absolute/path/to/tf-dialect/dist/index.js"]
}
}
}The server exposes four tools that AI agents can use:
Get the complete Terraform style guide configuration.
Input: None
Output:
{
"modules": { ... },
"naming": { ... },
"tagging": { ... },
"providers": { ... },
"security_defaults": { ... },
"examples": { ... }
}Example agent prompt:
"Show me the Terraform style guide for this project"
List code examples, optionally filtered by resource type or search term.
Input:
{
"resourceType": "s3_bucket", // optional
"search": "postgres" // optional
}Output:
{
"examples": [
{
"name": "s3_private_bucket",
"code": "module \"logs_bucket\" { ... }"
}
]
}Example agent prompts:
"Show me examples of S3 buckets" "List all RDS examples"
Validate Terraform code against the style guide.
Input:
{
"code": "resource \"aws_s3_bucket\" \"example\" { ... }",
"filePath": "main.tf" // optional
}Output:
{
"valid": false,
"violations": [
{
"ruleId": "required_tag_missing",
"severity": "error",
"message": "Missing required tags: environment, owner",
"line": 5,
"suggestion": "Add the following tags: environment = \"...\", owner = \"...\""
}
]
}Example agent prompts:
"Validate this Terraform code against our style guide" "Check if this S3 bucket configuration is compliant"
Generate a Terraform resource following organization standards.
Input:
{
"resourceType": "aws_s3_bucket",
"env": "prod",
"service": "analytics",
"purpose": "logs", // optional
"extraTags": { // optional
"team": "data"
}
}Output:
{
"code": "resource \"aws_s3_bucket\" \"this\" { ... }"
}Supported resource types:
aws_s3_bucketaws_db_instance- Others (generates generic stub with TODOs)
Example agent prompts:
"Generate an S3 bucket for prod analytics logs" "Create an RDS instance for the staging API database"
tf-dialect enforces the following rules:
Ensures all resources include required tags defined in your config.
Blocks dangerous patterns like:
0.0.0.0/0in security groups- Hardcoded credentials
- Custom regex patterns you define
Enforces security best practices:
S3 Buckets:
- Block public access
- Enable versioning
- Enable encryption (KMS or AES256)
RDS Instances:
- Enable storage encryption
- Set backup retention period
- Other configurable defaults
Validates resource names follow your format:
<project>-<env>-<component>-<extra?>- Checks component count and structure
# Install dependencies
npm install
# Build
npm run build
# Watch mode
npm run dev-
Agent asks about style:
- Agent calls
get_style_guide - Learns your organization's conventions
- Agent calls
-
Agent needs an example:
- Agent calls
list_exampleswithresourceType: "rds" - Gets working RDS configuration examples
- Agent calls
-
Agent generates code:
- Agent calls
generate_resourceor writes code - Then calls
validate_snippetto check compliance
- Agent calls
-
Agent fixes violations:
- Reads violation suggestions
- Updates code to be compliant
- Onboarding: New team members' AI assistants learn your standards instantly
- Consistency: All Terraform code follows the same patterns across teams
- Security: Enforce security defaults automatically in generated code
- Productivity: AI generates compliant code on first try, not generic HCL
MIT
Contributions welcome! This is an OSS-friendly project designed for IaC power users.