Skip to content

[NeurIPS-25] How Different from the Past? Spatio-Temporal Time Series Forecasting with Self-Supervised Deviation Learning

License

Notifications You must be signed in to change notification settings

Jimmy-7664/ST-SSDL

Repository files navigation

[NeurIPS 2025] How Different from the Past? Spatio-Temporal Time Series Forecasting with Self-Supervised Deviation Learning

  • ST-SSDL Framework:

Framework

Preprint Link

Arxiv link

  • OS

    Linux systems (e.g. Ubuntu and CentOS).

  • Python

    The code is built based on Python 3.9. You can install required packages using pip:

    pip install -r requirements.txt
    
  • Datasets

    All six datasets are already provided. The PEMS-BAY dataset is provided in zip file due to the limitation of file size. You just need to unzip the file in the PEMSBAY folder.

  • Run following commands to prepare data:

    python generate_training_data_his_BAY.py
    python generate_training_data_his_LA.py
    python generate_training_data_his_PEMS.py --dataset PEMS04
    python generate_training_data_his_PEMS.py --dataset PEMS07
    python generate_training_data_his_PEMS.py --dataset PEMS08
    python generate_training_data_his_D7.py --dataset PEMSD7M
  • Then train the model with following commands:

    cd model_STSSDL
    python train_STSSDL.py --gpu 0 --dataset METRLA
    python train_STSSDL.py --gpu 0 --dataset PEMSBAY
    python train_STSSDL.py --gpu 0 --dataset PEMSD7M
    python train_STSSDL.py --gpu 0 --dataset PEMS04
    python train_STSSDL.py --gpu 0 --dataset PEMS07
    python train_STSSDL.py --gpu 0 --dataset PEMS08
    

    Performance on Spatiotemporal Forecasting Benchmarks

Main results.

About

[NeurIPS-25] How Different from the Past? Spatio-Temporal Time Series Forecasting with Self-Supervised Deviation Learning

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •  

Languages