[NeurIPS 2025] How Different from the Past? Spatio-Temporal Time Series Forecasting with Self-Supervised Deviation Learning
-
Linux systems (e.g. Ubuntu and CentOS).
-
The code is built based on Python 3.9. You can install required packages using pip:
pip install -r requirements.txt -
All six datasets are already provided. The PEMS-BAY dataset is provided in zip file due to the limitation of file size. You just need to unzip the file in the PEMSBAY folder.
-
Run following commands to prepare data:
python generate_training_data_his_BAY.py python generate_training_data_his_LA.py python generate_training_data_his_PEMS.py --dataset PEMS04 python generate_training_data_his_PEMS.py --dataset PEMS07 python generate_training_data_his_PEMS.py --dataset PEMS08 python generate_training_data_his_D7.py --dataset PEMSD7M
-
Then train the model with following commands:
cd model_STSSDL python train_STSSDL.py --gpu 0 --dataset METRLA python train_STSSDL.py --gpu 0 --dataset PEMSBAY python train_STSSDL.py --gpu 0 --dataset PEMSD7M python train_STSSDL.py --gpu 0 --dataset PEMS04 python train_STSSDL.py --gpu 0 --dataset PEMS07 python train_STSSDL.py --gpu 0 --dataset PEMS08

