11<p align =" center " >
2- <img width = " 70% " height = " 70% " src =" https ://github.com/iqiukp/Kernel-Principal-Component-Analysis-KPCA/blob/master/imgs /helix.png" >
2+ <img src =" http ://github-files-qiu.oss-cn-beijing.aliyuncs.com/KPCA-MATLAB /helix.png" >
33</p >
44
55<h3 align =" center " >Kernel Principal Component Analysis (KPCA)</h3 >
66
7- <p align =" center " >MATLAB Code for dimensionality reduction, fault detection, and fault diagnosis using KPCA</p >
7+ <p align =" center " >MATLAB code for dimensionality reduction, fault detection, and fault diagnosis using KPCA</p >
88<p align =" center " >Version 2.2, 14-MAY-2021</p >
99<
p align =
" center " >Email:
[email protected] </
p >
1010
@@ -119,12 +119,12 @@ accuracy of SPE = 100.0000%
119119```
120120
121121<p align =" center " >
122- <img width = " 70% " height = " 70% " src =" https ://github.com/iqiukp/Kernel-Principal-Component-Analysis-KPCA/blob/master/imgs /helix.png" >
122+ <img src =" http ://github-files-qiu.oss-cn-beijing.aliyuncs.com/KPCA-MATLAB /helix.png" >
123123</p >
124124
125125Another application using banana-shaped data:
126126<p align =" center " >
127- <img width = " 70% " height = " 70% " src =" https ://github.com/iqiukp/Kernel-Principal-Component-Analysis-KPCA/blob/master/imgs /banana.png" >
127+ <img src =" http ://github-files-qiu.oss-cn-beijing.aliyuncs.com/KPCA-MATLAB /banana.png" >
128128</p >
129129
130130
@@ -153,7 +153,7 @@ kplot.reconstruction(kpca)
153153```
154154
155155<p align =" center " >
156- <img width = " 70% " height = " 70% " src =" https ://github.com/iqiukp/Kernel-Principal-Component-Analysis-KPCA/blob/master/imgs /circle.png" >
156+ <img src =" http ://github-files-qiu.oss-cn-beijing.aliyuncs.com/KPCA-MATLAB /circle.png" >
157157</p >
158158
159159
@@ -194,7 +194,7 @@ kplot = KernelPCAVisualization();
194194kplot.cumContribution(kpca)
195195```
196196<p align =" center " >
197- <img width = " 70% " height = " 70% " src =" https ://github.com/iqiukp/Kernel-Principal-Component-Analysis-KPCA/blob/master/imgs /cumContirb.png" >
197+ <img src =" http ://github-files-qiu.oss-cn-beijing.aliyuncs.com/KPCA-MATLAB /cumContirb.png" >
198198</p >
199199
200200As shown in the image, when the number of components is 21, the cumulative contribution rate is 75.2656%,which exceeds the given explained level (0.75).
@@ -231,7 +231,7 @@ kplot = KernelPCAVisualization();
231231kplot.cumContribution(kpca)
232232```
233233<p align =" center " >
234- <img width = " 60% " height = " 60% " src =" https ://github.com/iqiukp/Kernel-Principal-Component-Analysis-KPCA/blob/master/imgs /components.png" >
234+ <img src =" http ://github-files-qiu.oss-cn-beijing.aliyuncs.com/KPCA-MATLAB /components.png" >
235235</p >
236236
237237As shown in the image, when the number of components is 24, the cumulative contribution rate is 80.2539%.
@@ -280,7 +280,7 @@ accuracy of SPE = 96.6000%
280280```
281281
282282<p align =" center " >
283- <img width = " 70% " height = " 70% " src =" https ://github.com/iqiukp/Kernel-Principal-Component-Analysis-KPCA/blob/master/imgs /FD_train.png" >
283+ <img src =" http ://github-files-qiu.oss-cn-beijing.aliyuncs.com/KPCA-MATLAB /FD_train.png" >
284284</p >
285285
286286The test results are
@@ -293,7 +293,7 @@ number of SPE alarm = 851
293293```
294294
295295<p align =" center " >
296- <img width = " 70% " height = " 70% " src =" https ://github.com/iqiukp/Kernel-Principal-Component-Analysis-KPCA/blob/master/imgs /FD_test.png" >
296+ <img src =" http ://github-files-qiu.oss-cn-beijing.aliyuncs.com/KPCA-MATLAB /FD_test.png" >
297297</p >
298298
299299### 06. Fault diagnosis
@@ -344,6 +344,6 @@ fault variables (SPE) = 1 44 18
344344```
345345
346346<p align =" center " >
347- <img width = " 70% " height = " 70% " src =" https ://github.com/iqiukp/Kernel-Principal-Component-Analysis-KPCA/blob/master/imgs /diagnosis.png" >
347+ <img src =" http ://github-files-qiu.oss-cn-beijing.aliyuncs.com/KPCA-MATLAB /diagnosis.png" >
348348</p >
349349
0 commit comments