@@ -112,7 +112,7 @@ def make_inputs(self) -> None:
112112 # Create input ops for next (t+1) visual observations.
113113 visual_input = self .policy_model .create_visual_input (
114114 self .policy_model .brain .camera_resolutions [i ],
115- name = "visual_observation_ " + str (i ),
115+ name = "gail_visual_observation_ " + str (i ),
116116 )
117117 self .expert_visual_in .append (visual_input )
118118
@@ -121,7 +121,7 @@ def make_inputs(self) -> None:
121121 self .encoding_size ,
122122 LearningModel .swish ,
123123 1 ,
124- "stream_ {}_visual_obs_encoder" .format (i ),
124+ "gail_stream_ {}_visual_obs_encoder" .format (i ),
125125 False ,
126126 )
127127
@@ -130,7 +130,7 @@ def make_inputs(self) -> None:
130130 self .encoding_size ,
131131 LearningModel .swish ,
132132 1 ,
133- "stream_ {}_visual_obs_encoder" .format (i ),
133+ "gail_stream_ {}_visual_obs_encoder" .format (i ),
134134 True ,
135135 )
136136 visual_policy_encoders .append (encoded_policy_visual )
@@ -163,15 +163,15 @@ def create_encoder(
163163 concat_input ,
164164 self .h_size ,
165165 activation = LearningModel .swish ,
166- name = "d_hidden_1 " ,
166+ name = "gail_d_hidden_1 " ,
167167 reuse = reuse ,
168168 )
169169
170170 hidden_2 = tf .layers .dense (
171171 hidden_1 ,
172172 self .h_size ,
173173 activation = LearningModel .swish ,
174- name = "d_hidden_2 " ,
174+ name = "gail_d_hidden_2 " ,
175175 reuse = reuse ,
176176 )
177177
@@ -182,7 +182,7 @@ def create_encoder(
182182 hidden_2 ,
183183 self .z_size ,
184184 reuse = reuse ,
185- name = "z_mean " ,
185+ name = "gail_z_mean " ,
186186 kernel_initializer = LearningModel .scaled_init (0.01 ),
187187 )
188188
@@ -198,7 +198,7 @@ def create_encoder(
198198 estimate_input ,
199199 1 ,
200200 activation = tf .nn .sigmoid ,
201- name = "d_estimate " ,
201+ name = "gail_d_estimate " ,
202202 reuse = reuse ,
203203 )
204204 return estimate , z_mean , concat_input
@@ -209,15 +209,15 @@ def create_network(self) -> None:
209209 """
210210 if self .use_vail :
211211 self .z_sigma = tf .get_variable (
212- "sigma_vail " ,
212+ "gail_sigma_vail " ,
213213 self .z_size ,
214214 dtype = tf .float32 ,
215215 initializer = tf .ones_initializer (),
216216 )
217217 self .z_sigma_sq = self .z_sigma * self .z_sigma
218218 self .z_log_sigma_sq = tf .log (self .z_sigma_sq + EPSILON )
219219 self .use_noise = tf .placeholder (
220- shape = [1 ], dtype = tf .float32 , name = "NoiseLevel "
220+ shape = [1 ], dtype = tf .float32 , name = "gail_NoiseLevel "
221221 )
222222 self .expert_estimate , self .z_mean_expert , _ = self .create_encoder (
223223 self .encoded_expert , self .expert_action , self .done_expert , reuse = False
@@ -229,7 +229,7 @@ def create_network(self) -> None:
229229 reuse = True ,
230230 )
231231 self .discriminator_score = tf .reshape (
232- self .policy_estimate , [- 1 ], name = "GAIL_reward "
232+ self .policy_estimate , [- 1 ], name = "gail_reward "
233233 )
234234 self .intrinsic_reward = - tf .log (1.0 - self .discriminator_score + EPSILON )
235235
0 commit comments