Skip to content

Multi-output #196

@briandesilva

Description

@briandesilva

Hi, very interesting package! I might be doing something wrong, but I also may have found a bug. The pyuoi linear models are subclasses of sklearn.base.MultiOutputMixin (i.e. isinstance(model, MultiOutputMixin) evaluates to True), but they don't appear to support multiple targets.

Minimal working example:

import numpy as np
from pyuoi.linear_model import UoI_ElasticNet

x = np.ones((5, 2))
model = UoI_ElasticNet()
model.fit(x, x)

Error message:

---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-28-41f22fb29892> in <module>
      3 x = np.ones((5, 2))
      4 model = UoI_ElasticNet()
----> 5 model.fit(x, x)

~/venv/lib/python3.6/site-packages/pyuoi/linear_model/base.py in fit(self, X, y, stratify, verbose)
    199             self._logger.setLevel(logging.WARNING)
    200 
--> 201         X, y = self._pre_fit(X, y)
    202 
    203         X, y = check_X_y(X, y, accept_sparse=['csr', 'csc', 'coo'],

~/venv/lib/python3.6/site-packages/pyuoi/linear_model/base.py in _pre_fit(self, X, y)
    538             if y.shape[1] > 1:
    539                 raise ValueError('y should either have shape ' +
--> 540                                  '(n_samples, ) or (n_samples, 1).')
    541         else:
    542             raise ValueError('y should either have shape ' +

ValueError: y should either have shape (n_samples, ) or (n_samples, 1).

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions