-
Notifications
You must be signed in to change notification settings - Fork 17
Open
Description
Hi, very interesting package! I might be doing something wrong, but I also may have found a bug. The pyuoi linear models are subclasses of sklearn.base.MultiOutputMixin (i.e. isinstance(model, MultiOutputMixin) evaluates to True), but they don't appear to support multiple targets.
Minimal working example:
import numpy as np
from pyuoi.linear_model import UoI_ElasticNet
x = np.ones((5, 2))
model = UoI_ElasticNet()
model.fit(x, x)Error message:
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-28-41f22fb29892> in <module>
3 x = np.ones((5, 2))
4 model = UoI_ElasticNet()
----> 5 model.fit(x, x)
~/venv/lib/python3.6/site-packages/pyuoi/linear_model/base.py in fit(self, X, y, stratify, verbose)
199 self._logger.setLevel(logging.WARNING)
200
--> 201 X, y = self._pre_fit(X, y)
202
203 X, y = check_X_y(X, y, accept_sparse=['csr', 'csc', 'coo'],
~/venv/lib/python3.6/site-packages/pyuoi/linear_model/base.py in _pre_fit(self, X, y)
538 if y.shape[1] > 1:
539 raise ValueError('y should either have shape ' +
--> 540 '(n_samples, ) or (n_samples, 1).')
541 else:
542 raise ValueError('y should either have shape ' +
ValueError: y should either have shape (n_samples, ) or (n_samples, 1).
Metadata
Metadata
Assignees
Labels
No labels